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Clustering-Based Hyperspectral Band Selection
Using Information Measures
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Abstract—Hyperspectral imaging involves large amounts of in-
formation. This paper presents a technique for dimensionality
reduction to deal with hyperspectral images. The proposed method
is based on a hierarchical clustering structure to group bands to
minimize the intracluster variance and maximize the intercluster
variance. This aim is pursued using information measures, such
as distances based on mutual information or Kullback-Leibler
divergence, in order to reduce data redundancy and nonuseful
information among image bands. Experimental results include
a comparison among some relevant and recent methods for hy-
perspectral band selection using no labeled information, showing
their performance with regard to pixel image classification tasks.
The technique that is presented has a stable behavior for different
image data sets and a noticeable accuracy, mainly when selecting
small sets of bands.

Index Terms—Dimensionality reduction, feature clustering,
feature selection, information theory.

I. INTRODUCTION

HE BENEFITS of hyperspectral imaging in several disci-

plines are becoming relevant in many emerging applica-
tions. Multi- or hyperspectral sensors acquire data from a range
of wavelengths in the spectrum, and apart from the traditional
remote sensing application, they are being introduced in impor-
tant and demanding application fields, such as medical imaging,
product quality inspection, and fine arts.

On the other hand, hyperspectral data usually entail dealing
with large amounts of information, with little, or even no,
labeled information, which makes difficult the application of
supervised techniques, for instance, for pixel classification or
image segmentation. Another common drawback present in hy-
perspectral images when performing classification or regression
tasks is that hyperspectral information is commonly represented
in a large number of bands, which are usually highly correlated;
thus, the information provided can contain important data re-
dundancies. Selecting the relevant range of wavelengths in the
spectrum while keeping the accuracy for some given tasks is
desirable to save computational efforts and data storage, and
can also simplify the image acquisition step.
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This reduction in the hyperspectral representation could
be done using feature extraction [1]-[4] or feature selection
techniques [5], [6]. In feature extraction, we would obtain a
new and reduced data set representing the transformed initial
information, whereas in feature selection, we would have a
subset of relevant data from the original information. Other
techniques try to exploit spatial information for dimensionality
reduction purposes [7].

In hyperspectral imaging, feature or band selection is prefer-
able to feature extraction for dimensionality reduction because
of two main reasons [8]. On the one hand, feature extraction
would need the whole (or most) of the original data repre-
sentation to extract the new features, forcing to always obtain
and deal with the whole initial representation of the data. In
addition, since the data are transformed, some crucial and
critical information may have been compromised and distorted,
for instance, when dealing with physical measures that are
represented in the hyperspectral image domain, while band
selection has the advantage of preserving the relevant original
information from the data.

The availability of little or no labeled information has also
been a matter of attention, with increasing recent work on band
reduction techniques for different hyperspectral imaging tasks
[8], [9] being the most common one-pixel classification.

In summary, a very desirable preprocessing step in hyper-
spectral imaging and, particularly, on pixel classification tasks
is to perform a band selection process to reduce the redundant
information in the image representation without losing classi-
fication accuracy in a significant way and using no supervised
information. To this end, we propose a new technique that does
the following.

» Exploits band correlation through a clustering-based al-
gorithm. A similar strategy has also been used in dis-
tributional clustering for text categorization [10] or data
compression [11], due to the high dimensionality that
these approaches have to deal with.

e Can use different measures to discriminate among the
bands. In this paper, two different measures are proposed,
resulting in two variants of the same algorithm. Both
criteria are based on information theory measures [12].

* Obtains subsets of relevant bands to try to get the best
classification performance, mainly when selecting small
sets of bands, where the band selection methods have
to really show their capabilities to extract the relevant
information in the data.

e It is not a ranking or incremental method. That is, the
best m bands are not the best m — 1 bands plus another
relevant band.

0196-2892/$25.00 © 2007 IEEE



MARTINEZ-USO et al.: CLUSTERING-BASED HYPERSPECTRAL BAND SELECTION

In order to show the performance of the proposed method,
we also present a comparison against several unsupervised
methods for band selection in hyperspectral imaging. These
methods have been chosen for their relevance in band selection
using no labeled information and with the intention of covering
as many tendencies as possible in this field. The comparison
is done by testing the proposed and reference methods with
different hyperspectral images and several types of classifiers,
using the pixel classification accuracy as a criterion to check the
relevance of the bands selected.

II. CLUSTERING-BASED BAND SELECTION

In hyperspectral imaging for remote sensing, it is very com-
mon to have very little or no labeled information. Therefore,
a band selection technique that uses no supervised information
can be really useful. On the other hand, techniques that do not
use supervised information can use the whole data set available,
while supervised data sets usually provide labeled information
of only one part of the available data.

In text categorization [10], distributional clustering tech-
niques have been used to deal with high dimensionality,
compressing the initial data representation by means of
word/feature clusters. These techniques treat each word as
a single feature, and these clustering methods can be more
effective than standard feature selection, particularly, at lower
number of features [13]. These techniques use supervised infor-
mation for selecting the most representative words. However,
we are interested in a dimensionality reduction method that can
manage with no labeled information.

Similar clustering strategies have been applied in order to
select relevant filter responses from a bank of spectral channels
[14] or for data compression, such as vector quantization [11].
Obviously, representing data by fewer instances or a reduced
feature representation will lead to a loss of information. How-
ever, keeping only the most discriminative features or data
points, data analysis can become simpler, losing no significant
performance.

Therefore, the band selection technique proposed here is
based on a clustering process that is performed in a similarity
space that is defined among bands. Against other techniques
that rank bands by means of a similarity measure, a process
that joins similar bands together is proposed, constructing a
family of derived clusters that preserves a low variance among
the bands that belong to the same cluster and a high variance
among different clusters, in an analogous way, as clustering
is used in vector quantization for data compression. The final
selected bands will be the best representative instances from
each cluster. Moreover, in contrast to other authors that use a
divisive clustering approach [10], we advocate for an agglomer-
ative clustering strategy, in order to also reflect the hierarchical
nature of the spectrum structure [1].

In addition to these essential requirements, one of the main
objectives of this paper is a significant reduction of the re-
dundant information, keeping a high accuracy in classification
tasks. To this end, from information theory [15], we can find
information measures that can quantify how much a given ran-
dom variable can predict another one. We will particularly focus
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on this property. Therefore, we propose the use of two different
measures to exploit this point: 1) the mutual information and
2) the Kullback—Leibler divergence.

Not only is mutual information widely used as a criterion
for measuring the degree of independence between random
variables but it also measures how much a certain variable can
explain the information content about another variable, being a
generalized correlation measure. Thus, a dissimilarity measure
between two bands (random variables) can be defined based on
this measure as a relevance criterion. On the other hand, the
Kullback-Leibler divergence has been employed as a measure
of discrepancy between any two probability distributions, and it
can be interpreted as the cost of substituting a given probability
distribution with another one. This criterion was already applied
to compare hyperspectral image bands [9].

A. Dissimilarity Measures

1) Mutual-Information-Based Criterion: The first dissimi-
larity measure that is proposed tries to identify the subset of the
selected bands that are as independent as possible among them.
It is known that independence between bands [1] is one of the
key issues to obtain relevant subsets of bands for classification
purposes. As we will show in the experimental results, identi-
fying subsets of bands that are as much independent as possible
among them indeed produces very satisfactory classification
rates with regard to other band selection approaches.

The use of information measures, such as mutual informa-
tion, in order to quantify the degree of independence, provides
a methodology to find generalized correlations among image
bands. Thus, this technique exploits this concept for band
selection in order to reduce data redundancy and nonuseful
information.

Let us introduce some information theory concepts and prop-
erties [12], [16]. The Shannon entropy of a random variable X
with probability density function p(z) for all possible events
x € Q) is defined as

H(X) = - / p(z) log pl(z) d. (1)

Q

In the case of a discrete random variable X, entropy H (X)
is expressed as

H(X)=-> p(x) logp() )

e

where p(x) represents the mass probability of an event x €
from a finite set of possible values. Entropy is often taken as the
related amount of information of a random variable.

On the other hand, mutual information I is a measure of
independence between random variables. I can be interpreted
as a generalized correlation measure, which includes the linear
and nonlinear dependence between variables. In other words,
mutual information quantifies the statistical dependence of ran-
dom variables or how much a variable can predict another one.

Due to the complexity in calculating the joint distribution
in high-dimensional spaces [12], estimation of I (S, S), where
S is a subset of random variables out of the original set S
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such that S C S, becomes complex and highly computational
expensive. This is a critical issue from a practical point of view.
In this sense, the technique proposed here tries to overcome this
drawback by only using comparisons between pairs of random
variables, through defining a similarity measure based on the
mutual information between two random variables.

Let us consider a set of L random variables that represent
their corresponding bands Xi,..., X from a hyperspectral

image. I(X;, X;) is defined as

Z Z p(z;, z;)log ——~

T, €Qx;€Q

(IHIJ) 3)

10X, %) p(p(e;)

I is always a nonnegative quantity for two random variables,
being zero when the variables are statistically independent. The
higher the I, the higher the dependence between the variables.
Furthermore, the following property about two random vari-
ables always holds:

0 <I(X;, X;) < min{H(X;), H(X;)}. )

Mutual information I can be expressed in terms of entropy
measures according to the following expression:

I(Xi, X;) = H(Xs) + H(X;) — H(X;, X5) (5
where H(X;, X;) is the joint entropy, which is defined from
the joint probability distribution p(x;, x;).

So far, I has been introduced as an absolute measure of
common information shared between two random sources.
However, as we can infer from (5), I by itself would not
be suitable as a similarity measure. The reason is that it can
be low because either the X;, X; variables present a weak
relation (such as it should be desirable) or the entropies of these
variables are small (in such a case, the variables contribute with
little information). Thus, it is convenient to define a proper
measure, so that it works independently from the marginal
entropies and also measures the statistical dependence as a
similarity measure.

Thus, the following measure of similarity between two ran-
dom variables will be used:

NI(X;,X;) = H(X;) + H(X;)

(6)

which is a normalized measure of I. Furthermore, this normal-
ized mutual information is used as a dissimilarity or distance
measure as follows [14]:

2
Dni(X;, X;) = (1 — NI(XZ-,XJ-)) . @)

Fig. 1 represents the dissimilarity matrix Dy as a gray-level
image, where darker values represent high correlated bands
for the HyMap image with 128 bands (see Section III-C for
a database details). Using this distance in a clustering process
will lead to K selected bands from the final K clusters, having
low correlation (mutual information) and therefore a significant
degree of independence.
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Fig. 1. Dissimilarity matrix for a hyperspectral image with 128 bands.

2) Divergence-Based Criterion: Another information mea-
sure to be considered is the Kullback-Leibler divergence, which
can be interpreted as a kind of dissimilarity distance between
two probability distributions, although it is not a real distance
measure because it is not symmetric. Thus, a symmetric version
of the Kullback—Leibler divergence is often used [12], [16].

Let us call X; and X; two random variables that are defined
in () space, representing the ith and jth bands of a hyperspectral
image. Let us assume that p;(xz) and p;(«) are the probability
distributions of these random variables. Thus, the symmetric
Kullback-Leibler divergence can be expressed in the discrete
domain as follows:

pj(@)
Dir(Xi, X;) =Y pi(x) log
®)

The Kullback-Leibler divergence is always nonnegative,
being zero when p;(z) and p;(z) are the same probability
distribution. This divergence measure can be used as a criterion
to know how far two distributions are, and it can be interpreted
as the cost of using one of the distributions instead of the
other one. In the hyperspectral band selection framework, it
can be used as a measure of dissimilarity between two image
bands, which are represented by their corresponding probability
distributions.

This divergence measure is the second criterion that is pro-
posed to be used as a distance for the clustering process, and
it has been frequently used in order to compare different prob-
ability distributions, also in hyperspectral imaging to measure
the overlapped information that is contained in a pair of image
bands, as a band-decorrelation algorithm [9].

B. Variance-Reduction Clustering Strategy

Using the introduced criteria either based on the mutual in-
formation or the Kullback—Leibler divergence as a dissimilarity
measure between two image bands, a hierarchical clustering
process is then proposed, in order to form clusters of bands
as similar as possible among them within each cluster. The
clustering is part of an information compression process, and
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at the end of the clustering process, a representative band for
each cluster is selected, which will substitute all bands in the
cluster, at the lowest possible cost in terms of information loss.
The selected representatives will constitute the subset of bands
that were selected as a compressed image band representation
for the whole original set of image bands.

1) Hierarchical Clustering: Hierarchical structures are a
very intuitive way to summarize certain types of data sets. One
interesting characteristic of hierarchical methods is the fact that
different linkage strategies create different tree structures. The
algorithm proposed here uses an agglomerative strategy. Thus,
the number of groups is reduced one by one.

In particular, a hierarchical clustering algorithm based on
Ward’s linkage method [17] is used. Ward’s linkage has the
property of producing minimum variance partitions. Thus, this
method is also called minimum variance clustering, because it
pursues to form each possible group in a manner that minimizes
the loss that is associated with each grouping (internal cohe-
sion). Several studies point out that this method outperforms
other hierarchical clustering methods [18], but, in our case, the
process also helps us to form groups with low variance in their
level of similarity.

Briefly summarizing the linkage strategy, let us suppose that
clusters C). and C are merged. The general expression for the
distance between the new cluster (C,., C5) and any other cluster
(Cy) is defined as

D [(Ck)7 (CT?CS)] =Q- D(Ckvc'r‘) +ﬂ : D(Ck7cs)
+’Y'D(CMCS)+6' |D(Ckacr) _D(Ckacs)l (9)

where «, 3, v, and § are the merging coefficients. Ward’s
intercluster distance results from the following coefficients:

o= Ny + Ng . Nng + Ng
Ny +ns + N Ny + Ng + Ng
—-nNn

Ny + Ng + Ng

where n; is the number of instances in group .

The algorithm starts with the disjoint partition where each
cluster is formed as a single pattern (hyperspectral band). At
this step, dissimilarity matrix Dy is initialized by means
of the dissimilarity measures that were described in either
Section II-A1 or Section II-A2. After that, the algorithm looks
for the two most similar clusters that will have the minimum
distance value in matrix Dy . Then, these two clusters are
merged into one, and matrix Dy ., is updated using expression
(9). The rows/columns corresponding to the merged clusters are
deleted, and a row/column for the new cluster is added.

This process is repeated until X number of desired clusters
are obtained. The resulting mutually exclusive clusters repre-
sent groups of highly correlated bands, and bands from two
different clusters will have low correlation.

2) Selecting Cluster Representatives: Let us consider now
a resulting cluster C' with R bands. The weight of each band
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X; € C'is defined as

1

Wi=—5 (10)

1
2. TDLXR
o, e F DX X))

where € is a very small positive value to avoid singular values,
and function D(X;, X;) returns the distance value between
bands ¢, j. The representative band from each group is selected
as the band with the highest IW; in the cluster.

A low value of W; means that band 7 has an average large
distance from the other bands in the cluster, i.e., in this case,
band ¢ will have an average low correlation with regard to the
other bands in the cluster. In a reverse way, a high value of
W, means that band ¢ has, on average, a high correlation with
regard to the other bands in the cluster.

Therefore, when selecting cluster representative bands by
using dissimilarity measure Dy, choosing the band in the clus-
ter with the highest average correlation (mutual information)
with regard to the other bands in the cluster is equivalent to
choosing the band that better predicts the information content
of the other bands in the cluster; this is because the more mutual
information that two random variables share, the more one of
the variables can predict about the other one, which, in this
sense, creates a high degree of dependence among them.

On the other hand, when selecting cluster representative
bands by using distance D, choosing the band in the cluster
with the highest average divergence with regard to the other
bands in the cluster is equivalent to select the band that would
produce the lowest cost, in the average sense, when substituting
every band in the cluster by its representative.

As a result of the algorithm, there will be K bands selected,
representing K different clusters. The bands within the same
cluster will have a high correlation. The selected bands will
also cover the dissimilarity space, being a compressed repre-
sentation that tries to explain most of the information that is
contained in the original representation.

C. Implementation and Computational Issues

One of the key implementation issues is the estimation of
probability function p(z) for each band X . Probability density
function p(x) for all events x € 2, where (2 is the set of possible
values that a random variable X can take, will be estimated
for each image band as p(x) = h(z)/(MN), with h(x) being
the gray-level histogram and M N being a normalizing factor,
which is the number of pixels in the image. In an analogous
way, to estimate the joint probability distribution p(x;,x;) be-
tween two bands X; and X, the corresponding joint histogram
h(z;,x;) is first required, and the probability distribution is
then computed as p(z;, ;) = h(z;, x;)/(MN).

The whole algorithm can be divided into two main parts:
1) the operations done before the clustering (preclustering)
and 2) the operations properly involved in the hierarchical
clustering process (clustering). Note that, in the preclustering
part, we shall distinguish two different processes depending on
the measure used when we calculate the distances between any
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TABLE 1
PROCESSING TIMES FOR EACH OF THE ANALYZED METHODS USING
THE HYMAP IMAGE WITH 128 BANDS (SECTION II-C)

WaLuMI WaLuDi BCM-BDM
CPU time 1m48s 49s 141m58s
BCC-BDC MVPCA D
CPU time 149m47s 3m10s 10s

pair of bands: 1) based on mutual information Dy or 2) based
on the divergence criterion D .

* Preclustering: When the process begins, each band in the
image is considered as a separated cluster. Then, a distance
matrix of size L x L is initialized with the corresponding
distances between pairs of bands, obtaining a symmetrical
matrix.

— When using the distance based on mutual informa-
tion Dy, the histogram for each single band and
the cojoint histogram for each pair of bands must
be computed. Thus, assuming that M N > G, where
G is the number of gray levels in the bands, the
temporal cost of this partis O(L>M N).

— When using the divergence criterion D, the co-
joint histograms are not required. Now, the temporal
cost of this partis O(LM N + L%G).

Although, the Dy, criterion requires less computational
effort for the matrix initialization, both methods are com-
putationally affordable. From the point of view of the
spatial cost, only the distance matrix, the histograms, and
the image bands are required in the process. Furthermore,
only one pair of bands is required in main memory at a
time when the cojoint histograms must be computed.

e Clustering: This part is related to the operations that the
Ward’s linkage method involves. Once the distance matrix
has been initialized, its minimum value is found in order
to choose two clusters to be joined. Then, a new row and a
new column are added for the new cluster that was created,
and their entries in the distance matrix are computed
according to (9). Afterward, the rows and columns for
the old clusters in the distance matrix are removed. The
process repeats until the desired number of clusters is
reached. There are no additional requirements of memory
in this step. The temporal cost of this part is O(L?), which
will be significantly lower than the preclustering part for
usual images. Only if we had to deal with small images
and a large number of bands would the temporal cost of
this part comparable with the cost of the preclustering part.

As an illustrative example of these computational costs,
using an Intel Pentium I'V 3.00-GHz CPU and a HyMap image
with 128 bands of 700 x 670 pixels (see Section III-C for
a database description), our current implementation required
about 47 s for the preclustering part (using D 1), whereas the
clustering part required just 2 s. Table I gives a simple quan-
titative analysis of the computational cost of each method for
HyMap image. Note that no optimizations were considered, but
a direct implementation of the algorithms that were described
were run. Implementations were developed in C++. For the
linearly constrained minimum variance (LCMV)-constrained
band selection (CBS) methods, it is important to point out
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that the practical optimization that was described in [8] has
been assumed, i.e., since band correlation minimization (BCM),
band dependence minimization (BDM) and band correlation
constraint (BCC), band dependence constraint (BDC) share the
resulting bands that were selected, the best time of each pair has
been taken into account, otherwise BDM and BDC methods are
much more time-consuming.

In summary, the method presented here is computationally
affordable, even for hyperspectral images with a large number
of input bands since it is based on probability estimations from
histogram pixel values of, at most, pairs of bands, avoiding
unfeasible high-dimensional probability estimations.

III. EXPERIMENT AND RESULT

The experimental results will consist of comparing our
method with relevant techniques from recent literature using
different classifiers and databases. Methods, databases, and
classifiers are described in the succeeding sections.

A. Comparison With Other Techniques

In order to assess the performance of the proposed method
regarding state-of-art techniques, a comparison study has been
made with different methods that perform band selection using
no labeled information and that are a reference in the field
[8], [9], [19]. In addition, the comparison also includes other
dimensionality reduction methods, such as maximum-variance
principal component analysis (MVPCA) and information diver-
gence (ID) methods [9]. The succeeding sections summarize
briefly the methods that were used in the comparison.

1) CBS Method: CBS [8] is an approach that is differ-
ent from the variance-based methods or information theoretic
criteria-based methods. This technique constrains linearly a
band while minimizing the correlation or dependence of this
particular band with respect to the other bands in a hyperspec-
tral image. CBS methods propose four different solutions to an
optimization problem, with two based on correlation and two
based on dependence. At the same time, these four solutions
arise from two different approaches: 1) constrained energy
minimization (CEM) and 2) LCMV. Since the experimental
results show that both approaches perform similarly, LCMV is
usually used, because the computational complexity is reduced
substantially [20], [21]. Moreover, the sizes of the images that
were used in this comparison make the use of the CEM-CBS
implementation unfeasible.

In [8], the authors propose four criteria for band selection
(see Table II for analytical details).

1) bemy, (BCM) represents the minimal correlation of the
lth band with the entire hyperspectral image in the least
square sense by constraining band image by. Thus, the
larger the bemyp, the higher the correlation of the band,
therefore becoming the better choice in the hyperspectral
image.

2) bdmj (BDM) represents how much dependence the /th
band has on the other bands. The larger the bemy, the
more significant the band.
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TABLE II

images were used in the experimental results. Examples of
SOLUTIONS BASED ON CORRELATION OR DEPENDENCE FILTERS

these images are shown in Fig. 2.

Correlation
bemy = vlTEvl
L
beep = Zk:l,k " 1%(b£vl)
Dependence
bdml = ﬁlTEﬂjl
L ~
bde; = > 41 1 ll%(b{w)

3) beer, (BCC) measures the degree of the band constraint,
taking into account its correlation on all other bands from
the hyperspectral image.

4) bdcy, (BDC) measures the degree of the band constraint,
taking into account its dependence on all other bands
from the hyperspectral image.

2) MVPCA Method: MVPCA is a joint band-prioritization

Y

The 92AV3C source of data corresponds to a spectral
image (145 x 145 pixels, 220 bands, and 17 classes
composed of different crop types, vegetation, man-made
structures, and an unknown class) that is acquired with
the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) data set and collected in June 1992 over
the Indian Pine Test site in Northwestern Indiana
(http:/dynamo.ecn.purdue.edu/~biehl/MultiSpec). As de-
scribed in [22] and [23], several bands should be dis-
carded from this database due to the effect of atmospheric
absorption. Thus, 185 out of the 220 bands were used,
discarding the lower signal-to-noise ratio (SNR) bands.

and band-decorrelation approach to band selection, which was 2) The DAISEX'99 project pr.ovi.d.es gseful aerial images
introduced in [9] for hyperspectral image classification and also about the study of the variability in the reflectance of
used in some comparative works for band selection [8]. This different natural surfaces. This source of data, which is
band prioritization is based on an eigenanalysis, decomposing referred to as HyMap in figures/tables, corresponds to
a matrix into an eigenform matrix from which a loading factor a spectral image (700 x 670 pixels and seven classes
matrix could be constructed and used to prioritize bands. The that are .composed of crops and an unknown cla.ss) ac-
loading factors determine the priority of each band and rank quired with the 128-band HyMap spectrometer during the
all bands in accordance with their associated priorities. Thus, DAISEX"99  campaign (http:/io.uv.es/projects/daisex/).
bands so sorted are bands sorted from high to low variance. In this case, 126 bands were used, discarding also the
3) ID Method: The divergence-based criterion that was de- lower SNR bands.
scribed in Section II-A2 has been previously used in other 3) The third da.ltabase is an examplelof t.he applicatior.l of hy-
works as a discriminative criterion between probability distri- perspectral imaging to other applications that are different
butions for spectral band selection. In [9], it was used in the from remote sensing. It contains hyperspectral images
experimental comparison as a dissimilarity measure. In [8], it of orange fruits obtained by an imaging spectrograph
was also included in the comparative results, using it to assess (RetigaEx, Opto-knowledged Systems Inc., Canada). It
how different a probability distribution that is associated to a has two groups of hyperspectral images. The first one
band of the hyperspectral image is from a Gaussian probability covers the spectral range extended from 400 to 720 nm
distribution. Thus, the ID method measures how far from a in the visible (VIS, 676 x 516 pixels), obtaining a set
Gaussian behavior a probability distribution is, sorting the of 33 spectral bands for each image. The second group
bands according to the decreasing order of ID [8], i.e., from covers the spectral range from 650 to 1050 nm in the
non-Gaussian bands to Gaussian ones. near-infrared (NIR, 676 x 516 pixels), obtaining a set of
41 spectral bands for each image. In both cases, the
) camera has a spectral resolution of 10 nm. Regard-
B. Notational Comments ing the database content, each hyperspectral image has
Hereafter and, particularly, in graphs/tables, the following classes ranging from three to nine, depending on the
notation will be used: WaLuMI (Ward’s Linkage strategy Using orange view/type. Classes are composed basically of
Mutual Information) will denote the proposed method that background, healthy skin, and unhealthy skin, but images
uses the distance based on mutual information, as described can include a stem class and several types of unhealthy
in Section II-A1. Analogously, WaLuDi (Ward’s Linkage strat- skin (defects as rot, trip, overripe, or scratch). Concretely,
egy Using Divergence) will denote the method that uses the the hyperspectral image that is used in our experiments
Kullback—Leibler divergence measure that was introduced in has four classes, i.e., background, healthy skin, unhealthy
Section II-A2. skin (rot), and stem. No band was discarded in this case.
About the LCMV-CBS approach that was presented in 4) Satellite PROBA has a positional spectroradiometric sys-

the comparison of this work, the BCM/BDM and BCC/BDC
alternatives have been joined together due to the similar re-
sults that they produced (results were also joined in this way
in [8]). These methods are also referred as LCMV-CBS in
graphs/tables.

C. Databases Description

To test the proposed method and the described approaches
in the comparison, four different databases of hyperspectral

tem (CHRIS) that measures the spectral radiance, i.e., the
amount of light that passes through or is emitted from
a particular area, and falls within five given angles in
a specified direction. System CHRIS-PROBA is able to
operate in several acquisition modes. The images that are
used in this paper come from the mode that operates on
an area of 15 x 15 km, with a spatial resolution of 34 m,
obtaining a set of 62 spectral bands that range from 400
to 1050 nm (641 x 617 pixels and nine classes that are
composed of crops and an unknown class). The camera
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Fig. 2. Database examples. First for AVIRIS (92AV3C), second for HyMap spectrometer, third for a CHRIS-PROBA system, and fourth for the orange image
from the VIS collection. The images are presented as red—green—blue compositions.

Fig. 3.

Results for KNN3 classifier

Results for KNCNS classifier
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KNN3 and KNCN3 classifier results for each image. Results cover the average classification rate up to K = 15 selected bands.

Results for SVM classifier

Results for CART classifier
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Fig. 4. SVM (polynomial) and CART classifier results for each image. Results cover until K = 15.

has a spectral resolution of 10 nm. Concretely, images
cover the area that is known as Barrax (Albacete, Spain).
In this case, 52 bands were used, discarding the lower
SNR bands.

D. Classifier Description

As a validation criterion, in order to evaluate the performance
of each band selection method, a supervised pixel classification
process using a labeled image with the different classes has
been used. To this end, four classifiers have been used to com-
pare the significance of the subsets of selected image bands that
were obtained when using different classification schemes.

1y

K-Nearest Neighborhood (KNN3) [24]: Among the vari-
ous methods of supervised statistical pattern recognition,
the k-nearest neighbor rule achieves high performance

2)

when a sufficiently large number of samples is available,
without a priori assumptions about the distributions from
which the training examples are drawn. A new sample
is classified by calculating the distance to the k-nearest
training cases. The class of those training points then
determines the classification of the new sample by a
majority-voting scheme.

K -Nearest Centroid Neighborhood (KNCN3) [25]: Let p
be a sample whose k neighbors are found in a training
set. These neighbors have to be found such that (a) the
first nearest centroid neighbor of p corresponds to its
nearest neighbor (for example, ¢;) and (b) the ith nearest
centroid neighbor [for example, ¢; (¢ > 2)] is such that
the centroid of this and all previously selected nearest
centroid neighbors ¢1,...,q; is the closest to p. This
produces a neighborhood in which both closeness and
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Fig.5. (Top row) AV3C DB-KNN3 and KNCN3, and (bottom row) SVM (polynomial) and CART classifiers.

geometrical distribution of neighbors are taken into ac-
count because of the centroid criterion. On the other hand,
the proximity of the nearest centroid neighbors to the
sample is guaranteed because of the incremental nature of
the way in which those are obtained from the first nearest
neighbor.

Support Vector Machine (SVM) [26], [27]: SVMs are a

set of related supervised learning methods that are used

for classification and regression. In this case, a family of
generalized linear/polynomial classifiers has been used.

A special property of SVMs is that they simultaneously

minimize the empirical classification error and maxi-

mize the geometric margin of the decision boundary.

The effectiveness of SVM classifiers has been widely

tested, showing a good performance against other classi-

fiers [28].

4) Classification And Regression Trees (CART) [29]: The
CART methodology is a binary-decision-tree-based tech-
nique. For the experimental results, the Gini criterion was
used for splitting nodes, and the resulting tree was not
pruned.

3

~

In order to increase the statistical significance of the ex-
perimental results, classification rates were provided by

averaging the classification accuracy that was obtained by the
classifiers over five random partitions in each image data set.
The samples in each partition were randomly assigned to the
training and test sets with equal sizes as follows: HyMap =
37520 pixels, 92AV3C = 2102 pixels, VIS = 34882 pixels,
and CHRIS—PROBA = 1788 pixels. The proposed setup sat-
isfies that the sum of the elements from the different partitions
constitutes the entire original set, and the a priori probabilities
for each class in the data sets are preserved, as well as the sta-
tistical independence between the training and test sets of every
partition. It is important to point out that, in the case of the SVM
classifier, the test set size has been preserved, but the training
set size had to be reduced due to the huge computational cost,
maintaining the a priori probabilities for each class. Several
tests have been carried out in order to evaluate how the number
of pixels that were used to train the SVM classifier affects
both classification rate and computational cost. Thus, for SVM,
400 pixels were used in the training set, because we found
that, for this value, the classification rate has already reached
its ceiling, and at the same time, the computational cost is still
affordable.

Finally, it is important to point out that, due to space limita-
tions, only quantitative results are presented for KNN3, KNCN3,
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Fig. 6. (Top row) HyMap DB-KNN3 and KNCN3, and (bottom row) SVM (polynomial) and CART classifiers.

SVM with a polynomial kernel, and CART classifiers. However,
nearest neighbor and SVM with a linear kernel were also
tested with very similar classification results. The Naive Bayes
classifier [30] was also used in the experiments, but its results
were not included because of the significant lower performance
that it provided with regard to the other classifiers.

E. Discussion

Using the previously described experimental setup, the meth-
ods that were described for the comparison and the proposed
approach were applied in order to obtain a ranking of relevance
of the selected spectral bands with respect to the classification
performance that was achieved. The results that were obtained
can be summarized here.

* Classifiers KNN3 and KNCN3 use k = 3 neighbors. k =

5 and k = 7 alternatives have also been tested, obtaining
similar results.

» The graphs that are presented in Figs. 3 and 4 summarize
the experimental results that were carried out. Each graph
shows the results that were obtained for each classifier.
The z-axis represents the different band selection ap-
proaches that are grouped for each image database where

they were applied, whereas the y-axis shows the average
classification rate that was obtained by each method for
the corresponding image. The average classification is
computed over the first 15 subsets of features, which has
been considered to be the approximate transitory period to
reach a stable performance (flat zone of the classification).

The transitory zone is considered to be the most important

phase of the learning curve shown in Figs. 5-8, where

the band selection methods show their potential to really
select relevant bands. From these results, we have certain
observations.

—The VIS database is the one with the lowest difficulty,
whereas 92AV3C/HyMap/CHRIS—PROBA have a simi-
lar complexity.

—The WaLuMI and WaLuDi techniques present consis-
tent behavior, achieving good results in all databases
and for all classifiers, getting either the best or the
nearly best results.

Figs. 5-8 show graphs with the classification rates related

to the subset of K bands that were selected by each

method. Note that around K = 15, practically all the
methods for all the classifiers have reached the maximum
classification performance, which is named here as the
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(Top row) VIS DB-KNN3 and KNCN3, and (bottom row) SVM (polynomial) and CART classifiers.

flat zone of the learning curve. The initial zone, up to
approximately K = 15, is considered the transitory zone
of the learning curve, where the selection of a certain band
is more critical.

Tables III-VI show the same results as the graphs but in an
alternative way. These tables summarize the classification
rates numerically. Taking into account all possible values
of K, results in rows Up to K =5, Up to K = 10, and
Up to K = 15 present the average classification rate from
1t0 5, 10, and 15 bands, respectively. These three points of
reference are used to test the behavior of each method from
the first selected band to the 15th selected band, which is
considered to be the transitory zone of the learning curve,
before reaching the flat zone of the curve.

From this comparison, several interesting points arise.

1) The WaLuMI and WaLuDi methods generally obtained

equal or better performance with respect to the rest of the
methods in all databases. Therefore, regarding the band
selection problem, where there exists high correlation
among different features (image bands), the principle of
looking for noncorrelated bands from the different re-
gions of the spectrum by reducing the mutual information

Classification Accuracy (%)

Classification Accuracy (%)

2)

3)
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or a divergence measure between two bands has proved to
be effective measures to obtain subsets of bands, from the
point of view of pixel classification tasks.

From the experimental results, the Kullback—Leibler di-
vergence that was used in the WalLuDi method and
the mutual-information-based distance that was used in
WaLuMI show quite a similar behavior. Kullback-Leibler
divergence measures the cost of replacing one distribution
by another one, while mutual information measures how
much a random variable with a certain probability dis-
tribution can predict about another random variable. Al-
though both concepts quantify different properties when
comparing two probability distributions, because of the
high correlation that image bands have in this context,
the relative differences that were measured in both cases
behave similarly, and they are not significant enough to
obtain a noticeable change in the result after the clus-
tering process. Thus, in the technique proposed here, the
clustering process plays an important role.

It is worth remarking how important the methodology
that was used to achieve the final set of selected bands
is. Note that only the WaLuMI and WaLuDi methods
involve a measure among the bands into a global strategy
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Fig. 8. (Top row) CHRIS-PROBA DB-KNN3 and KNCN3, and (bottom row) SVM (polynomial) and CART classifiers.
TABLE III
CLASSIFICATION ACCURACY FOR 92AV3C DB
KNN3 WaLuMI  WaLuDi BCC/BDC BCM/BDM  MVPCA D
Up to K=5 46.1968 45.3920 45.2952 47.9512 41.7004 32.2388
Up to K=10  54.3994 53.0554 54.2662 54.5890 48.6832 38.4402
Up to K=15  58.2623 57.2229 57.3911 58.2217 51.0749 41.3549
KNCN3
Up to K=5 51.8656 50.9924 52.0228 53.3480 49.4236 41.5404
Up to K=10  57.3562 56.0056 57.6986 57.2758 52.2584 43.2708
Up to K=15  60.4424 59.2087 59.4807 59.9663 53.3100 44,5837
SVM
Up to K=5 55.1720 54.3700 56.6920 57.6940 54.8440 50.7840
Up to K=10  57.0870 56.7870 58.4230 58.0460 53.7360 48.9640
Up to K=15 58.8907 57.8533 58.8973 58.7947 53.7140 48.5813
CART
Up to K=5 51.8100 51.4000 52.1260 53.7500 50.1020 43.3180
Up to K=10  53.9140 53.3930 54.0120 55.1140 51.0740 44.3660
Up to K=15 55.0220 54.8080 54.5447 55.8620 51.4833 45.0373

of clustering. Thus, not only are mutual information and
divergence measures adequate correlation or dependence
measures, but the optimization process applied using a
clustering strategy also acquires a special relevance. In
fact, the robustness that was proven by these methods
in all databases shows that the effectiveness of the final
selected bands is probably due to the clustering process

4)

that was proposed since the selected bands are the final
cluster representatives. The better these clusters, the more
adequate the final K selected bands become.

LCMV-CBS methods and, particularly, the BCM/BDM
method provided a slightly better performance in the
92AV3C image, although WaLuMI, WaLuDi, and even
MVPCA achieve similar classification results in this
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5)

6)

TABLE 1V
CLASSIFICATION ACCURACY FOR HYMAP DB

KNN3 WaLuMI  WaLuDi BCC/BDC BCM/BDM  MVPCA 1D
Up to K=5 51.6708 51.7908 15.6685 15.6700 49.3344 19.3644
Up to K=10 67.1592 67.7140 26.1508 26.1516 66.8928 31.9862
Up to K=15 74.0872 74.0684 37.6936 37.6941 73.6891 45.0575
KNCN3
Up to K=5 52.6732 54.6012 27.6176 27.6176 52.4198 29.5700
Up to K=10 67.1812 69.0601 34.0264 34.0264 67.8815 37.8408
Up to K=15 74.2511 75.1045 42.5148 42.5148 74.4265 48.6313
SVM
Up to K=5 66.7060 67.5720 48.2520 48.2520 61.9540 48.7120
Up to K=10 72.6570 73.1960 54.8000 54.8000 70.3790 55.7240
Up to K=15 75.3127 75.1900 59.1540 59.1540 73.1600 61.6153
CART
Up to K=5 67.7580 68.0000 41.8580 41.8580 63.3040 45.5040
Up to K=10 75.6130 75.9980 52.2950 52.2950 73.5900 56.9270
Up to K=15  79.1713 79.2220 59.3993 59.3993 77.5340 64.2093

TABLE V

CLASSIFICATION ACCURACY FOR VIS DB

KNN3 WalLuMI  WalLuDi BCC/BDC BCM/BDM  MVPCA 1D
Up to K=5 91.6732 91.8176 54.2684 43.6916 82.7620 34.3248
Up to K=10 95.6346 95.6842 76.8526 71.5120 91.1670 66.4028
Up to K=15 96.9599 96.9904 84.4017 80.8429 93.9879 77.4091
KNCN3
Up to K=5 99.1028 98.9748 95.8700 94.7300 98.4540 93.4348
Up to K=10 99.3544 99.2672 97.6610 97.0616 99.0122 96.1330
Up to K=15 99.4447 99.3839 98.2815 97.8815 99.2211 97.2307
SVM
Up to K=5 98.3760 98.4300 94.9020 93.8540 98.0260 91.9820
Up to K=10 98.5660 98.6410 96.7370 96.1550 98.4080 95.0050
Up to K=15 98.6560 98.7333 97.4193 96.9727 98.5680 96.2727
CART
Up to K=5 98.8820 98.8320 94.7240 93.0800 98.4300 91.6900
Up to K=10 99.1430 99.0970 97.0080 96.0660 98.8750 94.7980
Up to K=15  99.2293 99.2033 97.7813 97.1433 99.0527 96.2427

TABLE VI

CLASSIFICATION ACCURACY FOR CHRIS-PROBA DB

KNN3 WaLluMl  WaluDi BCC/BDC BCM/BDM  MVPCA ID
Up to K=5 54.7268 55.3940 36.0116 40.0312 51.6092 35.0832
Up to K=10  67.0872 66.4850 45.0690 52.3860 62.0608 447650
Up to K=15 71.9287 70.4696 52.5717 58.6817 66.5905 52.1984
KNCN3
Up to K=5 57.9368 58.2844 35.9004 41.3032 52.5360 35.6304
Up to K=10  69.1882 68.2460 45.0242 53.1710 63.0118 45.1588
Up to K=15 73.7387 72.0052 52.3892 59.3647 67.7236 52.3288
SVM
Up to K=5 53,8780 54.0900 43.2200 46.5440 52.9240 43.0440
Up to K=10  63.0050 61.5760 47.5560 52.0010 58.1790 47.5770
Up to K=15 66.8167 63.6720 51.5173 55.3293 60.8320 51.5167
CART
Up to K=5 61.6100 62.3240 48.1520 53.5760 60.3120 48.6320
Up to K=10  67.7750 67.6750 52.9840 59.1950 65.8140 53.4580
Up to K=15 69.9700 69.4467 56.5320 61.7220 67.9073 56.8360

image. However, the LCMV-CBS methods lacked
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7) Although the best CPU time comes from the ID method,

consistency when HyMap or VIS databases were used
where they achieved poorer results.

MVPCA has generally achieved a good performance,
although it never achieves the best classification rate. One
of its main characteristics is that it also shows quite a
consistent behavior in all databases.

The ID method was the weaker one since its classification
rates are quite poor compared with the other ones. This
measure of non-Gaussianity seems to be unsuitable in
performing band selection for classification tasks.

this is not relevant due to the poor results that were given
by this method. It is important to distinguish the sub-
set of methods that are computationally affordable, i.e.,
WaLuDi, WalLuMI, and MVPCA, from the LCMV-CBS
methods, which are much more expensive in this sense.

IV. CONCLUSION

A technique for band selection in multi/hyperspectral images
has been presented, which was aimed at removing redundant



4170

information while keeping significant information for further
classification tasks. The proposed method uses a clustering
process strategy to group bands that minimizes the intracluster
variance and maximizes the intercluster variance, in terms
of some dissimilarity measures based on band information
content, such as mutual information and Kullback—Leibler
divergence.

The results that were obtained, from the point of view of pixel
classification in hyperspectral images, provide experimental
evidence about the importance that the proposed clustering
strategy in a band dissimilarity space plays in the problem of
classification.

The band selection method presented here is fully unsuper-
vised, i.e., it uses no labeling information. It is computationally
affordable, since it is based on probability estimations from
histogram pixel values, as a maximum, from pairs of bands,
avoiding unfeasible high-dimensional probability estimations.

The results in further pixel classification tasks demonstrate
that the proposed technique has a more consistent and stead-
ier behavior for different image databases and classification
schemes, with respect to the other methods that were used in the
experimental comparison. In particular, the method presented
here exhibits a good behavior in the transitory zones of the
learning curve (for small subsets of bands), where selecting the
appropriate and significant bands is more critical, being a desir-
able property for a good band/feature selector in classification
tasks.
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