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Abstract

In some key operational domains, the joint use of synthetic aperture radar (SAR) and multi-spectral sensors has shown to be a pow-
erful tool for Earth observation. In this paper, we analyze the potentialities of combining interferometric SAR and multi-spectral data for
urban area characterization and monitoring. This study is carried out following a standard multi-source processing chain. First, a pre-
processing stage is performed taking into account the underlying physics, geometry, and statistical models for the data from each sensor.
Second, two different methodologies, one for supervised and another for unsupervised approaches, are followed to obtain features that
optimize the urban related information. Finally, classification of �Urban/Non-Urban� areas is performed using standard algorithms.
Multi-temporal data acquisition was carried out in the areas of Rome and Naples (Italy) in 1995 and 1999. The data set includes images
from Landsat TM and 35-day interferometric pairs of ERS2 SAR images. We analyze the dependence of the classification accuracy on
the selected input features. The good results obtained using selected features improve the overall classification accuracy, thus confirming
the validity of our proposal.
� 2005 Elsevier B.V. All rights reserved.

Keywords: Remote sensing; Urban monitoring; Multi-spectral; SAR; Multi-source; Feature selection
1. Introduction

Monitoring urban areas at a regional scale, and even at
a global scale, has become an increasingly important topic
in the last decades in order to keep track of the loss of nat-
ural areas due to urban development. Earth observation
(EO) using remotely sensed imagery is a relatively new tool
to monitor urban growth. The combined use of optical and
synthetic aperture radar (SAR) data, interferometric SAR
processing, and development of new pattern recognition
techniques, are expected to enable an accurate detection
of the urban tissue. Moreover, the multi-temporal data
acquisition allows the monitoring of urban expansion (Cas-
tracane et al., 2003).
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This paper analyzes the joint use of SAR and multi-
spectral images to characterize and monitor urban areas.
The final objective of the study is to improve the �Urban/
Non-Urban� classification results by optimizing data sepa-
rability in the input space. In order to attain this objective,
the next two issues are considered: (1) to propose a well sui-
ted multi-source approach to the optical and SAR data
characteristics over urban areas; and (2) to consider dif-
ferent methodologies depending on the availability of a
labelled training set.

On the one hand, the information retrieved by SAR and
optical sensors differs to a great extent one from another. A
multi-spectral image allows the reconstruction of the
energy radiated by the Earth�s surface throughout the vis-
ible and infrared ranges of the electromagnetic spectrum
(Clark, 1999). On the other hand, SAR complex images
provide a measurement of the changes that microwaves
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suffer in amplitude and phase when they interact with the
Earth�s surface (Oliver and Quegan, 1998). Therefore,
SAR provides information that may not be obtained from
optical sensors: SAR images are related to the dielectric
properties of the target returning, are sensitive to micro-
textures, and microwave radiation penetrates the soil and
canopies depending on frequency and polarization. In re-
peat-pass SAR interferometry, the interferometric phase
measures distance to the targets, and the correlation be-
tween the complex SAR image pair, known as coherence,
measures the temporal stability. In addition, SAR images
overcome two of the main drawbacks of optical sensors:
they are illumination-independent since they come from
active sensors, and weather-independent since the used
wavelength is almost unaffected by clouds, fog, rain, etc.
However, the coherent nature of the microwave signal
gives rise to a phenomenon called speckle, which can be
modelled as multiplicative random noise (Ulaby et al.,
1986), and tends to mask the back-scattering characteristics
of the observed objects (granular noise). As a consequence,
the coherent image statistics of SAR data will be
dominated by the presence of speckle. In this context,
images of different nature, and hence with different
properties, should be processed all together properly,
something that cannot be readily done by means of
standard processing methods. For these reasons, it is
important to develop a methodology properly designed
for the optimal exploitation of SAR and multi-spectral
images.

On the other hand, this work is aimed at improving clas-
sification results using all the information and knowledge
about the problem. However, in many cases, especially in
continental or regional applications, a labelled training
set is difficult to be collected on a regular basis. Thus, we
Fig. 1. Images of the test areas of Rome (a,c) and Naples (b,d) acquired at 1999
(c,d).
consider the peculiarities of supervised and unsupervised
methods. Classical and advanced techniques have proven
to be well suited in this kind of classification tasks but some
problems are encountered: in supervised methods, the
learning process heavily depends on the quality of the
training data set (Fukunaga and Hayes, 1989); and in un-
supervised methods, the relationship between clusters and
classes of interest is not always ensured. In order to over-
come these drawbacks, we propose to obtain potentially
discriminative sets of features of �Urban/Non-Urban� areas
by using a different methodology for unsupervised and
supervised classifiers, as follows:

• In unsupervised approaches, clusters are usually built
attending to data similarity criteria, which could be
not related to the underlying discriminative information
among �Urban/Non-Urban� areas. Hence, the classifica-
tion process requires a previous extraction of the poten-
tially discriminative features to improve the clustering
process. The representative features for our problem
are generated attending to SAR and optical data infor-
mation content over urban areas (Strozzi et al., 2000;
Gouinaud et al., 1996; Carrilero et al., 2001).

• When using supervised methods, a subset of features
using feature selection algorithms to improve the classi-
fication results can be extracted (Gomez-Chova et al.,
2003a,b).

2. Material

Data used in this work were collected in the Urban
Expansion Monitoring (UrbEx) ESA-ESRIN DUP project
(Castracane et al., 2003). Results from UrbEx project were
: RGB composite from L3, L2, and L1 bands (a,b); and SAR log-intensities
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used to perform the analysis of the selected test sites and
for validation purposes as well (for further details, visit
http://dup.esrin.esa.int/ionia/projects/summaryp30.asp).
The test sites were Rome and Naples (Italy), where images
from ERS2 SAR and Landsat TM sensors were acquired in
1995 and 1999 (Fig. 1). For each one of the four scenarios
the data set consisted of two multi-temporal 35-day ERS2
SAR images and one multi-spectral 7-band Landsat image.
Moreover, an external Digital Elevation Model (DEM)
and a reference land cover map provided by the Italian
Institute of Statistics (ISTAT) were also available. The
ERS2 SAR pairs were selected with perpendicular baselines
between 20 and 150 m in order to obtain the interfero-
metric coherence from each complex SAR image pair.
The available images were labelled as: L1–L7 for Landsat
bands; In1–In2 for the SAR backscattering intensities (0–
35 days); and Co for coherence. Image acquisition from
the same area in two dates under different conditions guar-
antees robustness and stability of the results. Therefore, for
each one of the two sites and dates, the ISTAT ground truth

classification was used for a detailed training and valida-
tion sets selection. The total number of considered labelled
samples were 297,199 (approximately 25% from each sce-

nario). Two thirds of these samples were randomly selected
to build a training set, and the remaining was reserved for
validation purposes. Assessment on balanced training-val-
idation sets was performed in terms of mean and variance
of the input features. This allows us to test the different
capabilities of our data in a systematic way, and to select
the best models. In addition, the ISTAT ground truth clas-
sification can be used as a reference to estimate the classi-
fication accuracy over full images (1900 · 1200 pixels).

3. Methodology

3.1. Pre-processing of optical and SAR data

Since images come from different sensors, the first step is
to perform a specific processing and conditioning of optical
and SAR data, and to co-register all the images. The seven
bands of Landsat TM were co-registered with the ISTAT
classification data, and resampled to 30 · 30 m with the
Nearest-Neighbor algorithm. This processing was auto-
matically performed taking into account the geo-location
information available from Landsat data and using a
cross-correlation technique over edge-detected images.
The DEM had a pixel spacing of 20 m and was used to cor-
rect the topographic effects in SAR images over rugged ter-
rains in two different ways: (i) subtracting the topographic
phase of the interferometric phase in the coherence estima-
tion; and (ii) normalizing the backscattering intensity for
the true pixel size to reduce slope effects. All this SAR pro-
cessing was performed over a five-azimuth-looks interfero-
grams and intensity images, in which we increased the
number of looks up to five by averaging five times in the
azimuth direction in order to have approximately square
pixels and to reduce speckle. As SAR images were regis-
tered over the geo-coded DEM, the optical and SAR data
were automatically co-registered and resampled resulting in
a pixel size of 30 · 30 m. The registration for the multi-
source images was performed at sub-pixel level obtaining
a root mean squared (RMS) error of about 15 m, which
potentially enables good urban classification ability.

The second step consists of combining both sensor data
in order to have a suitable set of input features that facili-
tate the work of the subsequent pattern recognition meth-
ods. The adopted approach in this work is to use
consolidated, general-purpose techniques, which are valid
for a restrictive but simple statistical data model, and adapt
the input data to their assumptions through a pre-process-
ing phase. In particular, if the collected data followed a
Gaussian distribution, one could use a wide range of meth-
ods and techniques developed under this hypothesis. The
drawback is that the Gaussian probability density function
(pdf) is ill-suited for SAR data. A lot of research has been
done to find a suitable distribution for SAR images (Frery
et al., 1999). A modern unification of distributions for the
backscatter (Frery et al., 1995) states that the Generalized
Inverse Gaussian distribution is quite a good general
model. However, this pdf model does not allow a straight-
forward embedding into advanced statistical methods, such
as adaptive filters, principal component transformation,
maximum likelihood classification, clustering algorithms,
etc. In addition, the SAR intensity image is affected by
speckle as a multiplicative noise, which disturbs an overall
pdf model assumption. However, we can model SAR inten-
sity images with the K-distribution and, when the number
of looks is high enough, it approximates to a log-normal
distribution (Oliver and Quegan, 1998). Thus, a Gaussian
distribution can be obtained by log-transforming SAR
intensities (Pellizzeri et al., 2003). Then, we can assume
that, in homogeneous areas of the scene, all variables
present a Gaussian distribution approximately. With this
hypothesis in mind, we can combine the optical and SAR
features using a stacked vector approach (Pellizzeri et al.,
2003; Weydahl et al., 1995) and model the joint pdf with
the well-known multi-variate normal distribution (Duda
et al., 2000).

In addition, we can take advantage of a priori knowl-
edge about the optical and SAR data characteristics.
Before the classification, we can use the multi-spectral
information: first, by masking covers without any relation
with our study (e.g. water bodies); and second, by marking
the areas where optical information is not reliable and only
SAR data will be used (e.g. cloud covers).

3.2. Feature extraction in urban monitoring

When a labelled training set is not available, one is
forced to use unsupervised methods or methods based on
previous knowledge about the problem. Usually, unsuper-
vised classification methods build clusters attending to data
similarity criteria that might not be related to the under-
lying and potential discriminative information between
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�Urban/Non-Urban� areas. If we include features that are
not related to this information, classification results could
be wrong or misleading. Therefore, analysis of the optical
and SAR data characteristics over urban areas, and defini-
tion and extraction of discriminant features are mandatory
when using unsupervised or knowledge-based methods.

3.2.1. Synthetic aperture radar data

The primary factors influencing an object�s return signal
intensity are their geometric and electrical characteristics.
Due to the reflectivity and angular structure of buildings,
bridges, and other human-made objects, these targets tend
to behave as corner reflectors and show up as bright spots
in a SAR image. Therefore, in the SAR intensity images,
the urban areas are characterized by very bright reflections
(given by the presence of planes at 90� angles) which are
maintained in time and under varying angles (Strozzi
et al., 2000). In repeat-pass interferometry, when the satel-
lite is on an exact repeat orbit—baseline zero—and the
phase contribution due to topography (DEM) is also re-
moved, the absolute value of coherence provides informa-
tion on measurement stability over time. Therefore, since
urban areas do not have strong and fast changes, it should
lead to a high coherence (Fanelli et al., 2000).

The main problem is that images acquired by SAR are
accompanied with speckle, which disturbs the image inter-
pretation since individual pixels provide very inaccurate
measurements. In order to reduce speckle in SAR images,
the simplest approach is to apply multi-look processing
during the image formation (average over several resolu-
tion cells). Numerous filtering techniques, based on digital
image processing techniques or statistical models, have
been proposed to reduce and smooth the speckle noise,
e.g. the Lee (Lee, 1981), Frost (Frost et al., 1982), Kuan
(Kuan et al., 1985), and Gamma MAP (Lopes et al.,
1993) filters. In all these speckle noise reduction techniques,
the statistical distribution of SAR data plays an important
role. For multi-look images, speckle noise obeys a Gamma
distribution and can be modelled as a multiplicative noise
(Ulaby et al., 1986): Inðx; yÞ ¼ Sðx; yÞ �Nðx; yÞ, where
In(x,y) is the intensity of an observed image pixel, S(x,y)
is the noise-free image pixel and Nðx; yÞ is the noise, char-
acterized by a distribution with unit mean. However, by
applying the logarithmic transformation to SAR intensi-
ties, the multiplicative nature of noise is changed to addi-
tive one. Taking logarithms to both sides of the equation,
we obtain: log Inðx; yÞ ¼ log Sðx; yÞ þ logNðx; yÞ, where
logNðx; yÞ is the additive noise with zero mean distribu-
tion. A direct consequence of this approach is that now
the filters to reduce image noise are not limited to the
multiplicative noise model.

In consequence, the original images cannot be analyzed
at a pixel level (as occurs in optical imagery), and thus,
each pixel has to be analyzed within its neighborhood. In
this work, we extract two features from the 35-day interfer-
ometric pairs of Single Complex Look SAR images: a spa-
tially filtered coherence map and a spatially filtered image
obtained from the two multi-temporal intensity images.
The objective of this processing is not limited to reduce im-
age noise in order to obtain the true backscattering (the
mentioned standard filters could do this task). We propose
an application-oriented spatial filtering based on previous
knowledge and optimized to differentiate urban areas.
The resulting features must improve �Urban/Non-Urban�
classification results even though we cannot discriminate
other kind of classes or phenomena.

Since high intensity is an indicator of urban areas, tak-
ing the minimum between the intensity values of two
multi-temporal passes emphasizes them with respect to
other areas, which could show high intensities by chance.
Therefore, before filtering, we combine the two intensity
images of the interferometric pair. The next step consists
of a non-linear spatial filtering. This processing aims to
convert a given image I containing intensity patterns of ur-
ban areas into a transformed image I 0 which can be directly
interpreted as a probability of urbanization. That is: (i) the
resulting image will present high homogeneous values in
urban areas and low values in all the other cover types;
(ii) �Urban/Non-Urban� classes must present high separa-
bility; and (iii) it must be resampled without information
loss. The later issue is important since we are interested
in detecting all urban agglomerations rather than its inter-
nal structure. For this purpose, three type of filters are
used:

• A maximum filtering of window size N · M applied
to an image I(x,y) yields an output image Iðx; yÞ ¼
Imax
N�Mðx; yÞ, which is determined by the maximum of
the neighborhood pixels N · M. We use this filter to
maximize the already high values over urban areas, i.e.
local window with at least one high intensity pixel (e.g.
corner reflector), avoiding low intensity pixels inside
urban areas.

• Similarly, a median filtering yields an output image
Iðx; yÞ ¼ Imedian

N�M ðx; yÞ, where the already high values
over urban areas are maximized. The median filter is
much less sensitive than the mean to extreme values.
We use this filter to keep the value that represents the
majority number of pixels in a local window.

• A pixel-wise adaptive Wiener filter (Lim, 1990) performs
a smoothing of an image I(x,y) by estimating the
local mean lN·M and variance r2

N�M within an N · M

local neighborhood of each pixel (x,y), and gives the fil-

tered image as Iðx; yÞ ¼ IwienerN�M ðx; yÞ ¼ lN�M þ r2N�M�m2

r2N�M
�

½Iðx; yÞ � lN�M �, where m2 is the noise variance (average
of all the local estimated variances). The maximum
and median filter are used with small windows to
enhance the urban areas. We use the Wiener filter in a
second filtering stage with a wider window to reduce
additive noise (e.g. speckle of a log-transformed SAR
intensity) while preserving sharpness and detail.

The combination of filters applied to the SAR images is
as follows:
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where I represents either the minimum intensity image,
I = min(logIn1, logIn2), or the coherence map, I = Co.
These constitute the two main features extracted from
SAR image processing.

3.2.2. Multi-spectral optical data

The information contained in multi-spectral images
allows the reconstruction of the energy radiated by the
Earth�s surface throughout the visible (VIS) and infrared
(IR) ranges of the electromagnetic spectrum. The proper-
ties of reflection, absorption, and emission of the materials
in certain wavelengths, due to their composition and
molecular structure, make possible the characterization
and identification of the observed materials from their
spectral signature. In particular, urban areas present no
chlorophyll absorption, like soil and dry organic matter,
with under-developed red edge, and absorption features
of iron bearing minerals (Carrilero et al., 2001). Seven spec-
tral bands that Landsat TM provides in each multi-spectral
image (three VIS, one Near IR, two Short-Wave IR, and
one Thermal IR) constitute the initial optical features.

3.3. Feature selection methods

When dealing with supervised methods, a high number
of input features related to the number and quality of sam-
ples can induce the model to overfit the data or to the well-
known problem of the curse of dimensionality (Hughes,
1968). We alleviate this problem by applying a feature
selection stage in order to reduce the input space dimen-
sion. Two methods are explored: sequential floating
forward selection (SFFS), and inspection of main and
surrogate splits in a classification and regression tree
(CART).

• The SFFS algorithm identifies the variables that better
discriminate among classes in a two-stage feature selec-
tion process. Firstly, a search strategy for feature group
selection is carried out, and secondly, the objective func-
tion that evaluates the different subgroups is calculated.
The SFFS algorithm produces a feature selection giving
the best subset of features for each dimension. In
(Gomez-Chova et al., 2003a), we proposed a methodol-
ogy that uses an objective function that maximizes the
mean probabilistic distance between classes. We use
the Bhattacharyya metric as the objective function to
be maximized, since it has better properties than Euclid-
ean metric.

• CART is a binary decision tree algorithm (Breiman
et al., 1984) which has two branches in each internal
node. It is based on the classification success and not
on a similarity criterion, it is non-parametric, and does
not impose a specific functional form. In a previous
work (Gomez-Chova et al., 2003b), we proposed to
select those features that better discriminate among clas-
ses by analyzing nodes and main splits of the optimal
classification tree. The SFFS method can use the accu-
racy of a classifier as an objective function too, but
CART allows knowledge discovery and full interpret-
ability by analyzing the tree structure.

4. Results

4.1. Knowledge-based feature extraction

In Section 3.2, some features extracted from SAR and
multi-spectral data were introduced to improve the results
of an unsupervised classifier by optimizing the differences
between �Urban/Non-Urban� areas. A first approach to test
the goodness of these features for our test sites is the cal-
culation of the histograms of �Urban/Non-Urban� classes
over the whole image. We generate the histograms for each
class in order to automatically find the thresholds between
classes and their corresponding classification error (i.e.
class overlapping). The histograms are represented with
the optimum resolution cell (number of bins) in order to
compensate the effects of a finite number of samples. This
procedure consists on iteratively reducing the number of
bins, and checking stability of the number and position
of thresholds. This yields a smoother histogram with small
error. In addition, the effect of a priori probabilities is com-
pensated by normalizing the histograms by the number of
samples of each class.

In the histograms plotted in Fig. 2, one can see the per-
formance of the log-transformation of the SAR intensities.
In Fig. 2a, the log-normal distribution is well suited to the
data histograms, and in Fig. 2b the histograms of the log-
arithm of the intensities are modelled with the correspond-
ing Gaussian distribution. When the proposed spatial
filtering is applied, both cases experiment an improvement
in the separability of the two classes. However, the result-
ing class distribution persists Gaussian when filtering the
log-transformed intensities (Fig. 2d) and is distorted when
the original ones are filtered (Fig. 2c). This confirms the
change from multiplicative to additive noise model when
applying logarithms since the Wiener adaptive spatial fil-
tering is appropriate for additive noise but not for speckle
in the original image (in fact the Frost filter is a Wiener fil-
ter adapted to multiplicative noise (Frost et al., 1982)).

Following the procedure explained in Section 3.2.1, to
calculate the minimum of both multi-temporal intensities
for each pixel, and then applying the spatial filtering, dras-
tically increases accuracy from 54% to 75%. However, the
spatial resolution after filtering is lower. In addition, this
filter is useful not only to combine intensities but to filter
the coherence map. In some coherence maps with poor dis-
crimination between classes (Fig. 3), classification accuracy
increases from 51% to 89% when applying the spatial filter.
Since coherence of urban areas is high, the proposed filter
maximizes the value of local areas with high coherence. In
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Fig. 2. Histograms of the original (a) and log-transformed (b) intensities, and the respective outputs of the adaptive spatial filter (c,d).
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the histograms, one can appreciate that the coherence dis-
tribution differs from a Gaussian (Fig. 3b), but after filter-
ing (Fig. 3d) this assumption is acceptable (because of the
high equivalent number of looks achieved (Strozzi et al.,
2000)).

The combination of optical and SAR features through a
stacked vector approach can improve results, which can be
further enhanced by taking advantage of a priori knowl-
edge about optical and SAR data characteristics. For in-
stance, the spectral information can be useful to simplify
the analysis by masking covers without any relation to
our study (e.g. water bodies difficult to see in SAR data),
and to identify cloud covers by labelling the areas where
the optical information is not reliable and only SAR data
can be used.

When using multi-spectral data, difference measures are
preferred (continuum removal, band ratios, absolute in-
dexes) since they are robust to variations in illumination
and atmospheric conditions. In our case, we computed
the normalized vegetation index (NDVI), band ratios be-
tween Landsat bands 1 (VIS) and 4 (Near IR), the cloud

mask generated using a global reflectance threshold and a
temperature threshold level in the thermal band 6 (cold
clouds and warmer ground surface), and water mask gener-
ated using Landsat bands 1, 4, and 5, due to the high water
absorption over 800 nm wavelengths.

4.2. Clustering heterogeneous classes

So far, we have made an effort to ensure that our data
follow approximately a Gaussian distribution. In this case,
we can model our data with their second order statistics
(mean and covariance matrix) and use a wide range of
well-established statistical methods (in our case the prob-
abilistic Bhattacharyya distance for normal distributions
and the Gaussian Maximum Likelihood classifier). How-
ever, to obtain good results when employing these meth-
ods, we must ensure the Gaussian distribution of classes
(and not only of features). This assumption could be false
when dealing with heterogeneous classes as �Urban/Non-
Urban�, but in any case the distribution of each class can
be modelled as a mixture of Gaussian components (Duda
et al., 2000). For this reason, we first perform an unsuper-
vised clustering for each training data class to detect the
data subclasses that should be better handled separately.
Since the number of clusters in each class is unknown, we
repeat a k-means procedure for a set of different num-
ber of clusters, k. The Davies–Bouldin index (Davies and



Fig. 3. Image and histograms of the coherence (up) and the spatially filtered coherence (down) which improves the classification accuracy from 51% to
89% (Rome�99).
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Bouldin, 1979) is calculated for the identified clusters with
each k, and the one with lowest index is selected. Due to the
random initialization of the k-means, if we run the cluster-
ing algorithm only once, the results could be suboptimal
and skewed. Therefore, for each specific number k of clus-
ters, the k-means is run 10 times and the best clustering is
0 5 10 15
1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75
Davies–Boulding Index

Number of clusters

No Urban
Urban 1

1

Fig. 4. Davies–Bouldin index (left) and sum of squared errors (right) as a functi
bars mark the best number of clusters selected by the minimum Davies–Bould
selected on the basis of the obtained sum of squared errors.
With this procedure, we cluster all labelled samples (train-
ing and validation) of both �Urban/Non-Urban� classes in
nine and eight subclasses respectively. These number of
clusters is defined by the minimum Davies–Bouldin index
as is shown by the vertical bars in Fig. 4.
0 5 10 15
2000

3000

4000

5000

6000

7000

8000

9000

0000

1000
Normalized sum of squared errors

Number of clusters

No Urban
Urban

on of the number of clusters of the Urban and Non-Urban classes. Vertical
in index.



86

88

90

ac
y 

%

Table 2
Ranking of features obtained by means of the CART algorithm for each
dimension (DIM), number of nodes of the CART which includes the new
feature, and overall classification accuracy (CA%) over the validation set
when adding the new feature

DIM Feature Nodes CART–CA (%) GML–CA (%)

1 L1 1 75.40 74.61
2 L6 2 78.64 77.54
3 Co 4 81.49 82.86
4 L4 8 84.63 86.91
5 L2 9 85.44 86.69
6 L5 10 85.77 87.26
7 L3 12 86.37 87.44
8 In2 18 87.00 87.56
9 In1 19 87.30 87.35
10 L7 89 88.80 87.49
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These subclasses do not have a priori meaning and we
consider them only for subsequent feature selection and
classification. In the SFFS algorithm, we treat them sepa-
rately to compute the probabilistic Bhattacharyya distance
among subclasses, but later we compute a weighted average
distance between the urban and non-urban classes. Simi-
larly, in the Gaussian maximum likelihood (GML) classi-
fier, we perform the classification for all the subclasses,
but at the end we obtain the overall classification accuracy
(CA%) only for the two classes of interest, i.e. classification
accuracy weighted by the number of samples in each class.
We confirm the validity of this approach since the classifi-
cation accuracy using all features increases from 75.93%
(when considering only the two classes) to 87.49% (using
subclasses).

4.3. Selected features by the SFFS algorithm

We apply the SFFS algorithm in order to find the set of
features that maximizes the average probabilistic Bhatta-
charyya distance between subclasses of Urban and Non-
Urban class. In order to test the sets of selected features,
we compute the overall classification accuracy of the Gauss-
ian maximum likelihood (GML) classifier. Results are com-
puted using the clustering of the classes (9 and 8 subclasses),
so avoiding the non-Gaussian heterogeneous classes.

Since the number of added or removed features is
adapted during the process, the SFFS algorithm gives the
best subset of features for each dimension. As shown in
Table 1, the selection process is not a mere addition of
the best next feature (see best subsets of three and four
features). Using these selected features improves the classi-
fication accuracy over the validation set and yields valuable
information on the relevance of input features.

4.4. Selected features by the CART algorithm

CART processing is carried out using a shareware
implementation from Salford Systems (Steingberg and
Colla, 1997), in which the complexity and accuracy of the
final tree can be easily controlled. Analysis of surrogate
and main splits in CART yields valuable information on
Table 1
Best subset of features selected by means of the SFFS algorithm for each
number of variables (DIM) and overall classification accuracy (CA) over
the validation set for the selected features

DIM Best feature subset CA (%)

1 L1 74.61
2 L1, L5 78.65
3 L1, L5, Co 83.21
4 L1, Co, L4, L6 86.91
5 L1, L5, Co, L4, L6 87.04
6 L1, L5, Co, L4, L6, L7 87.37
7 L1, L5, Co, L4, L6, L7, In2 87.55
8 L1, L5, Co, L4, L6, L7, In2, L2 87.57
9 L1, L5, Co, L4, L6, L7, In2, L2, L3 87.72
10 L1, L5, Co, L4, L6, L7, In2, L2, L3, In1 87.49
the relevance of input features. Each variable in the tree
has an importance score based on how often and with what
significance it serves as primary or surrogate splitter
throughout the tree. With CART is not necessary to use
the subclasses since it is a non-parametric method and does
not assume a Gaussian distribution. Table 2 shows a rank-
ing of variables according to this measure. Confidence on
this analysis can be ensured since classification rates of
the best tree (all features and 157 nodes) achieves CA
higher than 88% in both classes for the validation set, sug-
gesting that the underlying differences between classes has
been captured. In order to show the goodness of the ob-
tained results, Table 2 summarizes the CA when different
sets of features are used with CART and GML classifiers.

4.5. Dimensionality reduction

Finally, in order to compare and test the validity of the
proposed supervised methodologies, we analyze the classi-
fication accuracy as a function of the input dimension. The
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Fig. 5. Classification accuracy for different selection procedures as a
function of the number of selected features: �SFFS�, �CART�, �best
individuals�, �random selection�.
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results obtained using the GML classifier with different fea-
ture selection methods show that the classification success
rate does not improve beyond five features, or even falls
when adding more features less related with information
characteristic of urban areas. Fig. 5 shows the CA as a
function of the number of features for different selection
procedures: �SFFS�, selected features by the SFFS method
in Table 1; �CART�, selected features by the CART method
in Table 2; �best individuals�, addition of the best not-
included individual feature attending to the Bhattacharyya
distance (from most to less discriminative: L1, L4, Co, L6,
L7, L2, L3, L5, In1, In2); �random selection�, random
selected features (plotted case: L2, In2, L4, L6, In1, Co,
L3, L7, L5, L1). It is noticeable that the SFFS represents
an upper bound of the CA due to the searching of the best
feature subset for each dimension.

5. Conclusions

In this communication, we have analyzed the potential
of combining SAR and multi-spectral images to charac-
terize and monitor urban areas. Multi-source strategy
has been proposed taking into account the optical and
SAR data characteristics over urban areas. A pre-processing
of both sensor data has been performed to obtain a suit-
able set of input features which confirm the Gaussian
assumption. We have proposed two procedures, depending
on the availability of a labelled training set, to reduce
dimensionality while preserving relevant information for
urban classification. The first one is a knowledge-based
approach that enhances the discriminative information
between �Urban/Non-Urban� areas. For supervised prob-
lems, we have proposed feature selection procedures based
on SFFS and CART analysis algorithms. These feature
selection procedures yield the following benefits: (i) in-
crease the performance of the classifier by mitigating the
Hughes phenomenon; (ii) reduce the amount of data
allowing faster calculations, which in turn, enables train-
ing iterative methods, such as artificial neural networks;
(iii) using the selected features in the classifier optimizes
the class separation, allowing easy recognition of the
natural structure in data; and (iv) the feature ranking
provides a criterion to further reduce the input dimension.
In our experiments, the classification results are quite
satisfactory. The procedure is able to reduce the dimen-
sion up to five features without significantly affecting the
classification accuracy. Finally, we can conclude that the
extracted features are directly related to the urban cover
properties.
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