Índice

T10. Transformaciones geométricas

- Clasificación de transformaciones
- Representación matricial; coordenadas homogéneas
- Transformación directa e inversa
- Métodos de interpolación
- Otras transformaciones
- Warping
- Morphing
- Aplicación: registrado

Motivación

- Eliminar distorsiones debidas a...
 - la óptica (e.g. fish-eye lenses);
 - el tipo de sensor (e.g. imagen omnidireccional);
 - el punto de vista camara-escena;
 - etc.
- Introducir distorsiones para...
 - registrar imágenes;
 - estimar movimiento;
 - crear imágenes panorámicas;
 - etc.
- Reconocimiento de formas invariante a ciertas transformaciones

Transformaciones geométricas

Ejemplos de distorsiones

Lente "Ojo de pez"

Omnidireccional

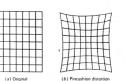
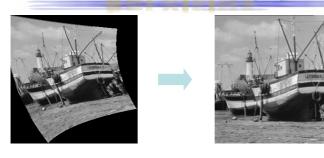
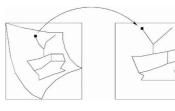
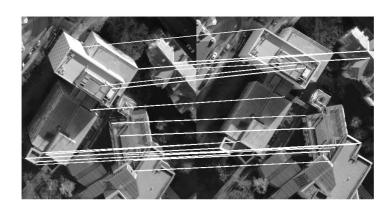




FIGURE 14.2-1. Example of geometric distortion



Corrección distorsiones

Transformaciones geométricas

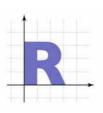
5

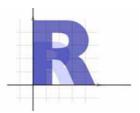
Transformaciones geométricas

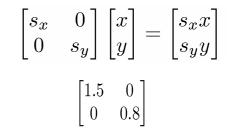
A partir de 33 imágenes

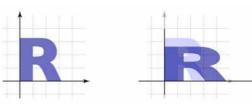
Clasificación de transformaciones

- Lineales
 - Traslación (T)
 - Rotación (R)
 - Escalado (isotrópico) (S)
 - Euclidea: T+R
 - Similitud: T+R+S
 - Afín
 - Similitud + S anisotrópico + Deformación (shear)
 - Proyectiva
- Polinómicas
- Generales


Escalado uniforme



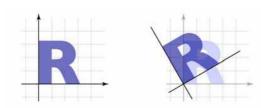

Escalado no uniforme (anisotrópico)

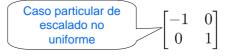

$$\begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} sx \\ sy \end{bmatrix}$$

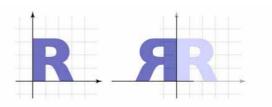
$$\begin{bmatrix} 1.5 & 0 \\ 0 & 1.5 \end{bmatrix}$$

Transformaciones geométricas

Transformaciones geométricas

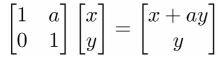


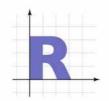

Rotación



Reflejo vertical

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \cos \theta - y \sin \theta \\ x \sin \theta + y \cos \theta \end{bmatrix}$$
$$\begin{bmatrix} 0.866 & -.05 \\ 0.5 & 0.866 \end{bmatrix}$$


Inclinación (Shear)


Transformación afín

- Combinación de las anteriores (traslación, escalado, rotación, inclinación)
- Se conservan:
 - Líneas rectas
 - Líneas paralelas
 - Ratios de longitudes a lo largo de una recta

$$\begin{bmatrix} 1 & 0.5 \\ 0 & 1 \end{bmatrix}$$

Transformaciones geométricas

13

Transformaciones geométricas

Representación matricial

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} Scale, \\ Shear, \\ Rotation \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

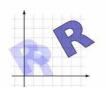
$$\begin{bmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & t \\ 0 & 1 & s \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x+t \\ y+s \\ 1 \end{bmatrix}$$

Usando coordenadas homogéneas

$$\begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & 2.15 \\ 0 & 1 & 0.85 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & 2.15 \\ 0 & 1 & 0.85 \\ 0 & 0 & 1 \end{bmatrix}$$


$$\begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0.866 & -0.5 & 0 \\ 0.5 & 0.866 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Composición de transformaciones

R

Rotación, traslación

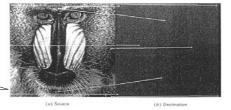
Traslación, rotación

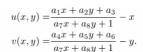
Escalar, rotar

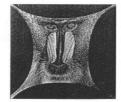
Rotar, escalar

Transformaciones geométricas

17


Otras transformaciones


Cuadrática (o parabólica), 12 parámetros


Polinómica

 $u(x,y) = a_1 + a_2x + a_3y + a_4xy$ $v(x,y) = a_5 + a_6x + a_7y + a_8xy.$

Polinomio de 2º orden

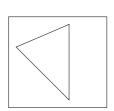
Transformaciones geométricas

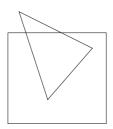
Ejemplos de transformaciones

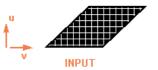
Universitat Jaume-I

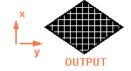
Cuestiones prácticas

- Pixels fuera de la imagen
 - Comprobar límites
- Coordenadas no enteras
 - Obtener coordenadas enteras más cercanas


Transformación directa e inversa


JAUME-I


Transformación directa e inversa



- Pérdida de tiempo: se transforman píxels que caen fuera de la imagen
- Hay píxels que se consideran más de una vez
- Hay píxels que no se consideran nunca

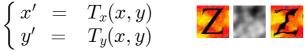
Forward Mapping

$$[x,y] = [X(u,v),Y(u,v)]$$

Can result in 'holes' in output data

$$[u,v] = [U(x,y),V(x,y)]$$

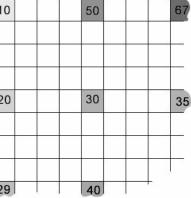
Can result in over-sampling


Transformaciones geométricas

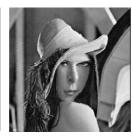
21

Transformaciones geométricas

Transformación general



¿Cómo rellenamos pixels?


original 10 50 67 34 20 30 35 45 29 40 53 42

400% enlargement			
10			
20			

Copiando del pixel más cercano

Variando gradualmente el nivel de gris

original

20 30 35 4	
	5
29 40 53 4	2

400% enlargement

10	50	67
20	30	35
		7 70
29	40	

Métodos de interpolación

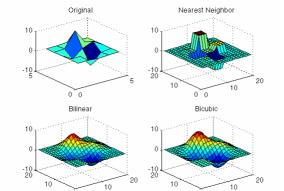
original

0.18				200
10	50	67	34	
20	30	35	45	183
29	40	53	42	S - S
				3

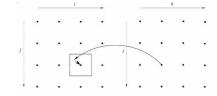
400% enlargement

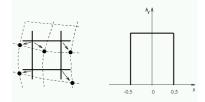
10	20	30	40	50	54	58	63	6
	21	in A		40				
20	22	25	27	30	31	33	34	3
29				40				

Transformaciones geométricas


25

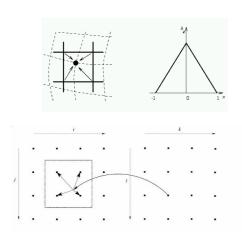
Transformaciones geométricas

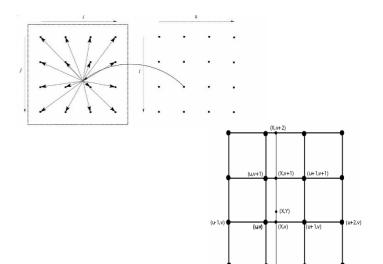



Interpolación: el vecino más próximo

JAUME*I

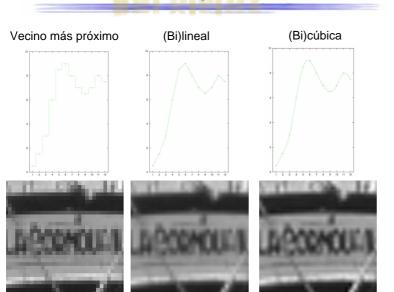
Orden cero





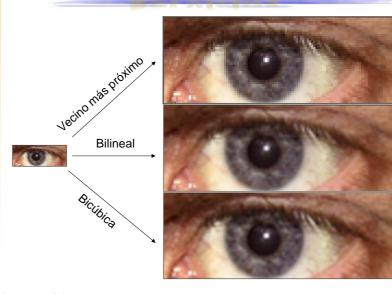
Interpolación bilineal

Interpolación bicúbica


Transformaciones geométricas

29

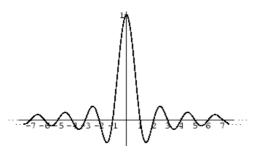
Transformaciones geométricas



Comparando métodos

Universitat Jaume-1

Interpolación en un zoom digital x450



Interpolación Sinc

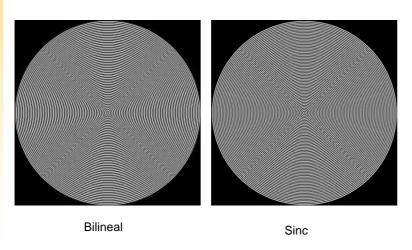
Vecinos más cercanos vs. sinc

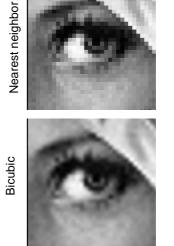
$$\begin{array}{rcl} x(t) & = & \displaystyle \sum_{n=-\infty}^{\infty} x_n \frac{\sin[\pi(t-n)]}{\pi(t-n)} \\ & = & \displaystyle \frac{\sin(\pi t)}{\pi} \displaystyle \sum_{n=-\infty}^{\infty} x_n \frac{(-1)^n}{t-n} \end{array}$$

Transformaciones geométricas

33

Transformaciones geométricas


Bilineal vs. sinc



Bilinear

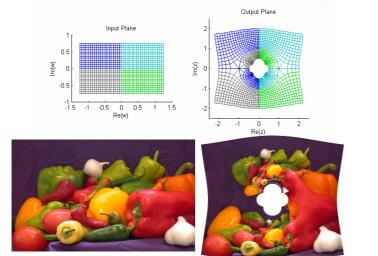
Sinc

Otros métodos de interpolación

- Clásicos: promediado que sólo depende de la posición
- Adaptativos: también consideran el nivel de gris

Sinc no adaptativo

Sinc adaptativo



Transformaciones geométricas

Conformal mappings

• Una transformación conforme, conserva la forma (localmente)

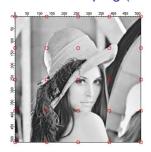
UNIVERSITAT JAUME-I

Coste computacional

Type of Resampling	Computational Complex
Nearest-Neighbor	$O(n^2)$
Bilinear Interpolation	$O(n^2)$
Cubic Convolution	$O(n^2)$
Cubic Spline, Direct Computation	$O(n^4)$
Cubic Spline, Using FFT	$O(n^3 \log n)$
Radial Functions with Local Support	$O(n^4)$
Gaussian, Using FFT	$O(n^3 \log n)$

n .

http://www.jhlabs.com/ip/distortion.html


Warping

- Quadratic warp (12 coeficientes)
- Cubic warps (20 coeficientes)
- Puntos de control: 6 (o 10) para resolver sistema
- Con más de 6 (o 10) puntos: sistema sobredeterminado; resolución por mínimos cuadrados

Morphing (técnica 1): Cross-dissolve

 $I_t(x, y) = (1 - t) \cdot I_0(x, y) + t \cdot I_1(x, y)$

Piecewise warping ("a trozos"), rejilla de control

Transformaciones geométricas

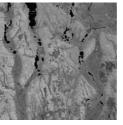
41

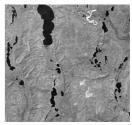
Transformaciones geométricas

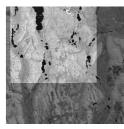
- Resultado
 - Poco realista
 - Transiciones no suaves

- Transformación incremental de una imagen en otra
 - Secuencia de imágenes intermedias
- Se consigue con
 - Warping
 - Registrado
 - "Color blending"
- Aplicación en películas, videos, etc.

- Puede manejar más situaciones
- Warps diferentes a diferente trozos de la imagen
- Elección manual de los trozos (o automática!)
- Considera correspondencias de características






Mesh warping

Registrado

- Problema: alinear dos (o más) imágenes
- Encontrar la transformación (función de warping)
- Proceso:
 - Selección de características (puntos, líneas,...)
 - Correspondencia de características

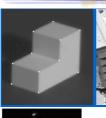
Transformaciones geométricas

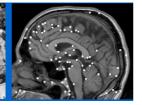
puntos

Picos/valles

45

Transformaciones geométricas

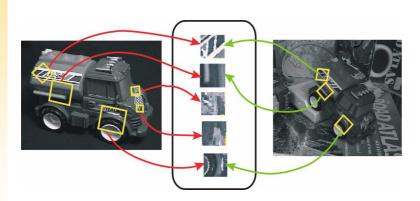

Detección de esquinas


Operatorgroesse: 5x 5 Lokale Maxima von Ewi#Ew2 in 5x 5 Bereich Ewi#Ew2/Quadrat[0.5[Ewi+Ew2]] > 0.15 Fwi#Ew2 > 5000.00

 Harris & Stephens 88. A Combined Corner and Edge Detector, AlveyVision Conf.'87, 147-151

- Características prominentes, distinguibles
- Distribuidas por toda la imagen
- Invariantes a transformaciones, robustas a ruido,...

Invarianza local


Búsqueda de los parámetros

- Descenso de gradiente
- Simulated annealing
- Búsqueda tabú
- Algoritmos genéticos
- ...

Estrategias

- Multi-resolución
 - ▶ En la imagen
 - En los parámetros

Transformaciones geométricas

49

Transformaciones geométricas

¿Ya están registradas?

Sum of Square Differences (SSD):

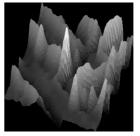
$$D(r,c) = \sum_{\substack{(r',c') \in W \\ (r+r',c+c') \in F}} \left\{ f(r+r',c+c') - w(r',c') \right\}^2$$

W: set of pixel positions in template w (template coordinates) F: set of pixel positions in image f (image coordinates)

Normalised cross-correlation (NCC), or correlation coefficient:

$$C_{nr}(r,c) = \frac{1}{\sqrt{S_f(r,c) \cdot S_w}} \sum \left[f(r+r',c+c') - \overline{f}(r,c) \right] \cdot \left[w(r',c') - \overline{w} \right]$$

where


$$S_f(r,c) = \sum \left[f(r+r',c+c') - \overline{f}(r,c)
ight]^2, \qquad S_w = \sum \left[w(r',c') - \overline{w}
ight]^2$$

Ejemplo de NCC: template matching

. .

Enlaces

- Transformaciones y su estimación http://vision.uji.es/~sicandel
- Tricks on doing rotation http://www.leptonica.com/rotation.html
- Geometric Transformation of Digital Images. Interpolation and Image Rotation http://microscopy.fsu.edu/primer/java/digitalimaging/processing/geometricaltransformation/
- Interpolation and Morphing http://www.biomachina.org/courses/processing/051.pdf
- Sinc interpolation (code) http://slacy.com/upsample/sinc.C
- Turbo-charged linear interpolation (demo) http://bigwww.epfl.ch/demo/jshiftlinear/start.php
- JIM Java Image Manipulator http://www.jhlabs.com/ip/imageeditor.html

Transformaciones geométricas

Propuestas de artículos

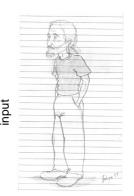
http://www.cs.duke.edu/~tomasi/papers/shi/shiCvpr9
4.pdf

- Thomas M. Lehmann, Claudia Gönner, Klaus Spitzer. Survey: Interpolation Methods in Medical Image Processing, IEEE Transactions on Medical Imaging, 18(11), Nov.1999 http://www.cvgpr.uni-mannheim.de/hornegger/MEDBV/handouts/lehmann.pdf
- Bojan Vrcelj, P. P. Vaidyanathan. Efficient Implementation of All-Digital Interpolation. IEEE Transactions on Image Processing, (10)11, Nov. 2001 http://www.systems.caltech.edu/dsp/ee112b-spring04/PPVsSplinePaperForClass.pdf

Bibliografía

Básica

- Nick Efford. Digital Image Processing: a practical introduction Using Java. Addison-Wesley 2000. (Cap. 9)
- D. Vernon. Machine Vision. Automatic inspection and Robot vision. Prentice-Hall, 1991 (Cap. 4.3) http://homepages.inf.ed.ac.uk/rbf/BOOKS/VERNON/vernon.htm
- D. Phillips. Image processing in C. Analyzing and Enhancing Digital Images. RanD Publications, 1994. (Cap. 13 y 14) [incluye código] http://homepages.inf.ed.ac.uk/rbf/BOOKS/PHILLIPS/
- G. Pajares, J. M. de la Cruz. Visión por computador: imágenes digitales y aplicaciones. Ra-Ma,2001. (Cap. 3.4)
- Avanzada
 - William K. Pratt. *Digital Image Processing* (3rd. edition). Joh Wiley & Sons, 2001 (Cap. 13)
 - Bernd Jähne. Image processing for Scientific Applications CRC Press, 1997 (Cap. 8)


Transformaciones geométricas

53

Problema

¿Cómo eliminar las rectas horizontales?

od bo

http://www.leptonica.com/line-removal.html