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Abstract

Colour can potentially provide useful information for a variety of computer vision tasks such as image segmentation, image
retrieval, object recognition and tracking. However, for it to be helpful in practice, colour must relate directly to the intrinsic
properties of the imaged objects and be independent of imaging conditions such as scene illumination and the imaging device.
To this end manyinvariant colour representations have been proposed in the literature. Unfortunately, recent work (Second
Workshop on Content-based Multimedia Indexing) has shown that none of them provides good enough practical performance.

In this paper we propose a new colour invariant image representation based on an existing grey-scale image enhancement
technique: histogram equalisation. We show that provided the rank ordering of sensor responses are preserved across a change
in imaging conditions (lighting or device) a histogram equalisation of each channel of a colour image renders it invariant to
these conditions. We set out theoretical conditions under which rank ordering of sensor responses is preserved and we present
empirical evidence which demonstrates that rank ordering is maintained in practice for a wide range of illuminants and imaging
devices. Finally, we apply the method to an image indexing application and show that the method out performs all previous
invariant representations, giving close to perfect illumination invariance and very good performance across a change in device.
� 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

It has long been argued that colour (RGB) images provide
useful information which can help in solving a wide range of
computer vision problems. For example, it has been demon-
strated[1–3] that characterising an image by the distribution
of its colours is an effective way to identify images with
similar content from amongst a diverse database of images.
Or that a similar approach[4] can be used to locate objects
in an image. Colour has also been found to be useful for
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tasks such as image segmentation[5,6] and object tracking
[7,8]. Implicit in these applications is the assumption that
the colours recorded by devices are an inherent property of
the imaged objects and thus a reliable cue to their identity. In
fact, an examination of image formation reveals that this as-
sumption is not valid. Rather, theRGBthat a camera records
is more properly a measure of the light reflected from the
surface of an object and while this does depend in part on
characteristics of the object, it depends in equal measure on
the composition of the light which is incident on the object
in the first place. So, an object which is lit by an illuminant
which is itself reddish will be recorded by a camera as more
red than will the same object lit under a more bluish illumi-
nant: imageRGBs are illumination dependent. In addition
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image colour also depends on the properties of the recording
device. Importantly, different imaging devices have different
sensors which implies that an object which produces a given
RGB response in one camera might well produce a quite
different response in a different device. Moreover, a camera
(or the user) may change the contrast in an image (e.g. by
applying a gamma function).

In recognition of this fact many researchers have sought
modified image representations such that one or more of
these dependencies are removed. Research has to-date been
focused on accounting for illumination dependence and can
be broadly classified into one ofcolour invariant[9–13] or
colour constancy[14,15] approaches. Colour invariant ap-
proaches seek transformations of the image data such that
the transformed data are illuminant independent, whereas
colour constancy approaches set out to determine an esti-
mate of the light illuminating a scene and provide this esti-
mate in some form to subsequent vision algorithms. Colour
constancy algorithms, in contrast to invariant approaches,
can deliver true object colours. Colour invariants can be cal-
culated post-colour constancy processing but the converse
is not true. Thus, in theory the colour constancy approach is
a more powerful solution to the problem. This said, colour
constancy has proven to be a harder problem to solve than
colour invariants and for the moment at least more practical
success can be achieved with invariants. Importantly, how-
ever, it has been demonstrated[15,1] that the practical per-
formance of neither approach is good enough to facilitate
colour-based object recognition or image retrieval across a
change in illumination. In addition, none of the methods
even attempts to account for device dependence.

In this paper we address the limitations of existing colour
constancy and colour invariant approaches by defining a new
image representation which we show is both illumination in-
dependent and (in many cases) also device independent. The
method is based on the observation that while a change in il-
lumination or device leads in practice to significant changes
in the recordedRGBs, the rank orderings of the responses of
a given sensor are largely preserved. So, for example, if we
look at the rank order ofRvalues for a set of surfaces under
one illuminant and compare it to the corresponding rank
order under a second light, we will find that the ordering
is approximately invariant. In fact, we show in this paper
that under certain simplifying assumptions, invariance of
rank ordering follows directly from the image formation
equation. In addition, we present an empirical study which
reveals that the preservation of rank ordering holds in prac-
tice both across a wide range of illuminants and a variety
of imaging devices. Thus, an image representation which
is based on rank ordering of recordedRGBs rather than on
the RGBs themselves offers the possibility of accounting
for both illumination and device dependence at the same
time.

There are a number of ways which we might exploit this
rank ordering of sensor responses to derive an invariant im-
age representation. In this paper we propose a method which

borrows a tool which has long been used by the image pro-
cessing community[16] for a quite different purpose. The
technique is histogram equalisation and is typically applied
to grey-scale images to produce a new image which is en-
hanced in the sense that the image has more contrast and
thus conveys more information. In some cases this results in
a visually more pleasing image. But in a departure from tra-
ditional image processing practice, we apply the procedure
not to a grey-scale image, but rather to each of theR,G, and
B channels of a colour image independently of one another.
This departure, though subtle, is significant since if one his-
togram equalisesR, G, andB independently it is possible
(indeed it is common) to arrive at an image with unnatural
pseudo-colours. As such the three-band histogram equalisa-
tion is usually advised against in the literature[16] since
the method almost never improves the quality of the image.
However, for our purposes the look of the image is not an
issue. Rather, we seek only an invariant representation.

Histogram equalisation achieves the sought invariance
since, as we will show, provided two images differ in such
a way as to preserve the rank ordering of pixel values
in each of the three channels then an application of his-
togram equalisation to each of the channels of the two im-
ages results in a pair of equivalent images. Thus, provided
a change in illuminant or device preserves rank ordering of
pixel responses, the application of histogram equalisation
will provide us with an invariant representation of a scene
which might subsequently be of use in a range of vision
applications.

At this point the reader may feel surprised that we are
proposing such a simple technique for image invariance.
However, from our perspective the simplicity of the tech-
nique is key: we show that a hitherto neglected technique
is applicable to colour imaging if the purpose is invariance
(and not attractive images). We demonstrate the utility of the
technique by applying the method to the problem of colour
indexing: we show that the method out performs all previ-
ous approaches and in the case of a change in illumination
provides close to perfect indexing.

The paper is organised as follows. In the next section
we briefly review the image formation process and show
formally how recorded responses depend on illuminant and
device. We then consider some simplifying assumptions of
the process and briefly describe a number of existing colour
invariants and how they are derived. In Section 3 we set
out a number of theoretical conditions under which rank
ordering of pixel values are preserved and we present an
empirical proof that rank orderings of sensor responses are
in practice approximately invariant across a wide range of
illuminants and devices. Section 4 shows how we can use
histogram equalisation to exploit this rank invariance and
derive an image which is illumination and device invari-
ant We demonstrate the utility of the technique by apply-
ing it to the problem of colour-based image indexing in
Section 5. Finally, we draw some conclusions from this work
in Section 6.
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2. Background

We adopt a simple model of image formation in which
the response of an imaging device to an object depends on
three factors: the light by which the object is lit, the sur-
face reflectance properties of the object, and the properties
of the device’s sensors. We assume that a scene is illumi-
nated by a single light characterised by its spectral power
distribution which we denoteE(�) and which specifies how
much energy the source emits at each wavelength (�) of the
electromagnetic spectrum. The reflectance properties of a
surface are characterised by a functionS(�) which defines
what proportion of light incident upon it the surface reflects
on a per-wavelength basis. Finally, a sensor is characterised
byQk(�), its spectral sensitivity function which specifies its
sensitivity to light energy at each wavelength of the spec-
trum. The subscriptk denotes that this is thekth sensor. Its
response is defined as

qk =
∫

�
E(�)S(�)Qk(�)d�, k = 1, . . . , m, (1)

where the integral is taken over the range of wavelengths�:
the range for which the sensor has non-zero sensitivity. In
what follows we assume that our devices (as most devices
do) have three sensors (m = 3) so that the response of a
device to a point in a scene is represented by a triplet of
values: (q1, q2, q3). It is common to denote these triplets
asR, G, andB or just RGBs and so we use the different
notations interchangeably throughout. In the context of this
paper then, an image is a collection ofRGBs representing
the device’s response to light from a range of positions in
a scene. We note further that the ideas we present here can
trivially be extended to images from devices with greater or
fewer than three sensors.

Eq. (1) is an accurate model of the image formation
process for Lambertian[17] surfaces for which incident
light is reflected equally in all directions, and indepen-
dently of the direction of the incident light. The equation
makes clear the fact that a device response depends both
on properties of the sensor (it depends onQk(�)) and also
on the prevailing illumination (onE(�)). That is, responses
are both device and illumination dependent. It follows that
if no account is taken of these dependencies, anRGBcan-
not correctly considered to be an intrinsic property of an
object.

An examination of the literature reveals many attempts
to deal with the illumination dependence problem. One ap-
proach is to apply a correction to the responses recorded by
a device to account for the colour of the prevailing scene
illumination. Provided an accurate estimate of the scene il-
lumination can be obtained, such a correction accounts well
for the illumination dependence, rendering responses colour
constant: that is stable across a change in illumination. The
difficulty with this approach is the fact that estimating the
scene illuminant is non-trivial. In 1998, Funt et al.[15]
demonstrated that the existing colour constancy algorithms

are not sufficiently accurate to make such an approach vi-
able, though more recent work[14] has shown that for sim-
ple imaging conditions and given good device calibration
the colour constancy approach can work.

In many situations, however, a calibrated device is not
available and so a different approach is required. Alterna-
tive approaches to colour constancy set out to derive from
the image data some new representation which is invariant
to illumination. Such approaches are classified as colour (or
illuminant) invariant approaches and a wide variety of in-
variant features have been proposed in the literature. One
of the simplest invariants is achromaticityrepresentation of
the image data. A chromaticity is derived from anRGBby
the following transformation:

r = R

R + G + B
, g = R

R + G + B
,

b = B

R + G + B
. (2)

A chromaticity vector(r, g, b) is invariant to a change in
intensity of an illuminant since if(R,G,B) is the response
recorded under one illuminant, then if the illuminant in-
tensity changes the response will change to(sR, sG, sB)

for some scale factors and applying the transformation in
Eq. (2) to both responses results in the same(r, g, b) triplet.

Accounting for a change in illumination colour is more
difficult because, as is clear from Eq. (1), the interaction
between light, surface, and sensor is complex. Researchers
have attempted to reduce the complexity of the problem by
adopting simple models of illumination change. One of the
simplest models is the so-calleddiagonalmodel in which it
is proposed that sensor responses under a pair of illuminants
are related by a diagonal matrix transform:(
Rc

Gc

Bc

)
=
(
d1 0 0
0 d2 0
0 0 d3

)(
Ro

Go

Bo

)
, (3)

where the superscriptso and c characterise the pair of il-
luminants. The model is widely used and has been shown
to be well justified under many conditions[18]. Adopting
such a model one simple illuminant invariant representa-
tion of an image can be derived by applying the following
transform:

R′ = R

Rave
, G′ = G

Gave
, B ′ = B

Bave
, (4)

where the triplet(Rave,Gave, Bave) denotes the mean
of all RGBs in an image. It is easy to show that this so-
calledGreyworldrepresentation of an image is illumination
invariant provided that Eq. (2) holds.

Assuming the same conditions Finlayson et al.[11] have
shown that successive and repeated application of Eqs.
(2) and (4) converges to an image representation (which
they call acomprehensively normalisedimage) which is
both intensity and illuminant colour invariant. Many other
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illuminant invariant representations[9,10,12,13]have been
derived, in some cases[12] by adopting different models of
image formation. All derived invariants, however, share two
common failings: first, it has been demonstrated that when
applied to the practical problem of image retrieval[1] none
of these invariants affords good enough performance across
a change in illumination. Second, none of these approaches
considers the issue of device invariance.

Variation of responses across devices can occur for a num-
ber of different reasons. First, the properties of the three
sensors of a device can vary significantly from one device
to another. So, whilst most trichromatic devices have sen-
sors which respond broadly to long-, medium-, and short-
wavelength regions of the visible spectrum, the exact regions
to which the sensors respond and the relative sensitivity of
the sensors within those regions will vary from one device
to another. In terms of Eq. (1), different devices have differ-
entQk . But even if two devices have the same sensors the
colours they record will not necessarily be the same for each
device. This is because device responses are often not lin-
early related to scene radiance as Eq. (1) suggests, but rather
the pixel values which a device outputs can be subject to
some non-linear transformation. Thus, more generally, the
image formation equation is written as

qk = f

(∫
�
E(�)S(�)Qk(�)d�

)
, k = 1, . . . , m, (5)

wheref () is some arbitrary (possibly) non-linear transform.
Importantly, the nature of this transform can vary from de-
vice to device and even on an per-image basis.

The transformf () is deliberately applied toRGBvalues
recorded by a device for a number of reasons. First, many
captured images will eventually be displayed on a monitor.
Importantly, colours displayed on a screen are not a linear
function of the RGBs sent to the monitor. Rather, there ex-
ists a power function relationship between the voltage driv-
ing the monitor (which is linearly related to image intensity)
and the displayed intensity. This relationship is known as
the gamma of the monitor, where gamma describes the ex-
ponent of the power function[19]. To compensate for this
gamma function images are usually stored in a way that re-
verses the effect of this transformation: that is by applying
a power function with exponent of 1/�, where� describes
the gamma of the monitor, to the image RGBs. Importantly,
monitor gammas are not unique but can vary from system
to system and so images from two different devices will not
necessarily have the same gamma correction applied. In ad-
dition to gamma correction other more general non-linear
“tone curve” corrections are often applied to images so as to
change image contrast with the intention of creating a visu-
ally more pleasing image. Such transformations are device
and, quite often, image dependent and so lead, inevitably,
to device-dependent colour. In the next section we consider
how we might account for the effect of a change in illumi-
nation and/or device.

3. Rank invariance of sensor responses

Suppose we adopt, like a number of previous authors
[9,20], the diagonal model of illumination change defined
by Eq. (3). The usual approach to deriving invariant repre-
sentations is to find algebraic manipulations of imageRGBs
such that illumination dependence is factored out. In this
case, the aim is to factor out the three parameters,d1, d2,
and d3, of the diagonal matrix in Eq. (3). But rather than
taking an algebraic approach we instead begin with the ob-
servation that one implication of this model of illumination
change is that the rank ordering of sensor responses is pre-
served under a change of illumination. To see this let us
denote byRo

i
the response of a single sensor to a surface

i under an illuminanto. Under a second illuminant, which
we denotec, the surface will have responseRc

i
and the pair

of sensor responses are related by

Rc
i = �Ro

i . (6)

Eq. (6) is true for all surfaces (that is,∀i). Now, consider
a pair of surfaces,i and j, viewed under illuminanto and
suppose thatRo

i
>Ro

j
, then it follows from Eq. (6) that

Ro
i >Ro

j ⇒ �Ro
i > �Ro

j ⇒ Rc
i >Rc

j

∀i, j, ∀�>0. (7)

That is, the rank ordering of sensor responses within a given
channel is invariant to a change in illumination under the
assumption of a diagonal model of illumination change.

Next, consider the more general model of image forma-
tion (Eq. (3)) in which sensor responses are allowed to un-
dergo a possibly non-linear transformation. Rank ordering
is also preserved in this case for a certain class of functions
f (). Specifically, rank ordering is preserved provided that
f () is a monotonic increasing function. Importantly, many
of the transformations such as gamma or tone-curve correc-
tions which are applied to images, satisfy this condition of
monotonicity and are thus rank invariant. For example power
(gamma) function transformations are rank invariant since:

Ri >Rj ⇒ (Ri)
� >(Rj )

� ∀�>0. (8)

It makes sense that tone-curve corrections applied to images
should also be monotonic (and thus rank invariant) since
such corrections are essentially mappings from input pixel
values to output values. If this mapping is not monotonic
as, for example, in the case of the mapping shown inFig. 1,
then it can happen that two quite different input pixel values
are mapped to the same output value.

Thus, we have a property of pixel values (rank ordering)
which is invariant to illumination and to a range of typical
transforms applied to images. For true invariance we must
also consider what happens when illumination change is not
diagonal and also when two devices have different spec-
tral sensitivities. Typical imaging devices have three classes
of sensor which are broadly sensitive in either the long-,
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Fig. 1. A non-monotonic tone mapping results in two or more input
values being mapped to the same output value.

medium-, or short-wavelength range of the visible spectrum.
Fig. 2 shows the three sensor classes for a range of typical
imaging devices. It is clear that there is a reasonable de-
gree of correlation between sensors of the same class across
different devices and so we might expect a good degree of
rank invariance of responses across different devices. We
consider this issue more carefully next.

3.1. Rank invariance in practice

To investigate further the rank invariance of sensor re-
sponses across changes in both illumination and device we
conducted a similar experiment to that of Dannemiller[21]
who investigated to what extent the responses of cone cells in
the human eye maintain their rank ordering under a change
in illumination. He found that to a very good approximation
rank orderings were maintained. Here, we extend the anal-
ysis to investigate a range of different devices in addition to
a range of illuminants.

Considering invariance of rank orderings of sensor re-
sponses for a single device under changing illumination we
proceed as follows. LetRk represent the spectral sensitivity
of thekth sensor of the device we wish to investigate. Now
suppose we calculate (according to Eq. (1)) the responses
of this sensor to a set of surface reflectance functions under
a fixed illuminantE1(�). We denote those responses by the
vectorP 1

k
. Similarly, we denote byP 2

k
the responses of the

same sensor to the same surfaces viewed under a second il-
luminantE2(�). Next, we define a functionrank() which
takes a vector argument and returns a vector whose elements
contain the rank of the corresponding element in the argu-
ment. Then, if sensor responses are invariant to the illumi-

nantsE1 andE2, the following relationship must hold:

rank(P 1
k ) = rank(P 2

k ). (9)

In practice, the relationship in Eq. (9) will hold only approx-
imately and we can assess how well the relationship holds
using Spearman’s rank correlation coefficient[22] which is
defined as

� = 1 − 6
N∑

j=1

d2
j

Ns(N
2
s − 1)

, (10)

where dj is the difference between thejth elements of

rank(P 1
k
) andrank(P 2

k
) andNs is the number of surfaces.

This coefficient takes a value between−1 and 1: a coeffi-
cient of zero implies that Eq. (9) holds not at all, while a
value of one will be obtained when the relationship is exact.
Invariance of rank ordering across devices can be assessed
in a similar way by defining two vectors:P 1

k
defined as

above andQ1
k

representing sensor responses of thekth class

of sensor of a second device under the illuminantE1. By
substituting these vectors in Eq. (10) we can measure the
degree of rank correlation. Finally, we can investigate rank
order invariance across device and illumination together by
comparing, for example, the vectorsP 2

k
andQ1

k
.

We conducted such an analysis for a variety of imag-
ing devices and illuminants, taking a set of 462 Munsell
chips[23], which represent a wide range of reflectances that
might occur in the world as our surfaces. For illuminants
we chose 16 different lights, including a range of daylight
illuminants, Planckian blackbody radiators, and fluorescent
lights, again representing a range of lights which we will
meet in the world. We investigated performance for all the
sensors shown inFig. 2 which include the spectral sensitiv-
ities of the human colour matching functions[24] as well
as those of four digital still cameras and a flatbed scanner.

Fig. 3is typical of the results we obtained with our analy-
sis. The figure is a plot of rank orderings of long-wavelength
sensor responses to all surfaces under a fixed illuminant,
against rank orderings of the corresponding responses for
the same sensor but under a different light. If rank order-
ing was completely invariant all points in this plot would lie
along the liney =x, which is also shown on the figure. It is
clear that deviations from this line are small and thus rank
ordering is approximately preserved for these two imaging
conditions. This fact is reinforced by the correlation coeffi-
cient which in this case is 0.99.

Table 1summarises the rank correlation coefficients for a
number of different situations. The first six rows of this table
show mean correlation for the three different classes of sen-
sor of a range of devices across a change in illumination. In
all cases correlation is very high implying that rank ordering
is well maintained across a change in device. The next three
rows show the results when illumination is kept fixed and
device is allowed to change. Once again mean correlation
is very high for the three illuminants shown. Similar results
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Fig. 2. Relative spectral sensitivity functions for the long-wavelength (top), medium-wavelength (middle), and short-wavelength (bottom)
sensors for all the devices tested. First column shows sensors for a Nikon D1 digital camera (solid line), a Sony DSC700 (dotted line) and
the colour matching functions (dashed line). The second column shows a Kodak DSC460 (solid line), a Sony DXC900 digital video camera
(dotted line), and a UMAX flatbed scanner (dashed line).

were obtained for all other illuminants. Finally, correlation
results are shown when both illumination and device are al-
lowed to change. In this case correlation is slightly lower
on average but is still sufficiently high to conclude that rank
orderings are maintained in practice across a change in both
device and illuminant.

3.2. Rank invariance of images

The analysis so far has demonstrated that under certain
theoretical conditions two images which differ only in cer-

tain aspects of their capture conditions have rank invariant
sensor responses. We have also shown that the sensor re-
sponses of images which differ not in content but only in
capture conditions are in practice rank invariant under a wide
range of capture conditions. We are thus in a position to de-
fine the equivalence of two or more images with respect to
their rank orderings.

Let us begin by defining an imageI1, a set ofRGB
pixel values which represent the response of an imaging
device to a number of surfaces viewed under a certain set
of capture conditions. Suppose further thatI2 represents a
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Fig. 3. Correlation plot of long-wave sensor responses to a set of
surfaces viewed under two different lights.

Table 1
Spearman’s rank correlation coefficient

Long-wave Medium-wave Short-wave
sensor sensor sensor

Across illumination
Colour matching 0.9957 0.9922 0.9992
functions
Camera 1 0.9983 0.9984 0.9974
Camera 2 0.9978 0.9938 0.9933
Camera 3 0.9979 0.9984 0.9972
Camera 4 0.9981 0.9991 0.9994
Scanner 0.9975 0.9989 0.9995

Across devices
Daylight (D65) 0.9877 0.9934 0.9831
Fluorescent (cwf) 0.9931 0.9900 0.9710
Tungsten (A) 0.9936 0.9814 0.9640

Across device and illuminant
0.9901 0.9886 0.9774

Rows 1–6 show results for each sensor (R, G, and B) of a
range of devices. Results are averaged over all pairs of a set of 16
illuminants. Rows 7–9 show results averaged over all devices for
three different illuminants. Row 10 shows results averaged over
six devices and 16 illuminants.

second image. Further letP 1
k

andP 2
k

(k=1,2,3) be vectors
representing thekth sensor responses of each image. We say
thatI1 is equivalent toI2 (writtenI1 ≡ I2) if the following
is true:

rank(P 1
k ) = rank(P 2

k ), k = 1,2,3, (11)

where rank() is a function which takes a vector valued
argumentv and returns a vector whoseith element is the
rank ofvi when the elements ofv are ordered from smallest
to largest.

In addition, given an imageI we can define an equivalence
class of images with respect toI which we denoteI. This
equivalence class is defined as follows:

I = {I j |rank(P j
k
) = rank(Pk), k = 1,2,3}. (12)

Any image which is in the equivalence class of an imageI is
equivalent to that image in the sense that its rank ordering is
the same. As we have seen, this implies that the images are
equivalent modulo a change in capture conditions (such as
illumination or imaging sensors). Thus, comparing images
in a manner which is invariant to capture conditions can be
achieved by determining whether or not two images belong
to the same equivalence class as defined above.

Alternatively, we can define a new image representation
which exploits the rank invariant properties discussed above
and leads to a representation which is invariant to capture
conditions. In this case, all images within a single equiva-
lence class (as defined above) will have the same invariant
representation. There are many ways in which we might ex-
ploit rank invariance to define a new invariant image rep-
resentation. We define one possible representation below
which is simple to implement and which, we will demon-
strate, has a number of useful properties.

4. Histogram equalisation for colour invariance

To understand our method consider a single channel of
anRGB image recorded under an illuminanto where with-
out loss of generality we restrict the range ofRo to be on
some finite interval:Ro ∈ [0 . . . Rmax ]. Now, consider fur-
ther a valueRo

i
∈ [0 . . . Rmax ], whereRo

i
is not necessar-

ily the value of any pixel in the image. Let us define by
P(Ro <Ro

i
), the number of pixels in an image with a value

less than or equal toRo
i
. Under a second illuminant,c, a

pixel valueRo under illuminanto is mapped to a corre-
sponding valueRc. We denote byP(Rc <Rc

i
) the number

of pixel values in the second image whose value is less than
Rc
i
. Assuming that the illumination change preserves rank

ordering of pixels we have the following relation:

P(Rc <Rc
i ) = P(Ro <Ro

i ). (13)

That is, the number of pixels in our image under illuminant
o which have a value less thanRo

i
is equal to the number

of pixels in the image under illuminantc which have a
value less than the transformed pixel valueRc

i
: a change

in illumination preserves cumulative proportions. So, if we
represent our image data by these cumulative proportions
we obtain a new image representation which is illuminant
invariant. That is, we define the mapping from original image
to invariant image thus:

Rinv
i = Rmax

Npix
P (Ro�R0

i ), (14)
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Fig. 4. Top row shows the same scene captured with the same camera under three different lights. The second row shows the corresponding
images post histogram equalisation.

where Npix is the number of pixels and the constant
Rmax/Npix ensures that the invariant image has the same
range of values as the input image. Repeating the procedure
for each channel of a colour image results in the required
invariant image:

Rinv
i = Rmax

Npix
P (Ro�R0

i ), (15)

Ginv
i = Gmax

Npix
P (Go�G0

i ), (16)

Binv
i = Bmax

Npix
P (Bo�B0

i ). (17)

The reader familiar with the image processing literature
might recognise Eqs. (15)–(17). Indeed, this transformation
of image data is one of the simplest and most widely used
methods for image enhancement and is commonly known
as histogram equalisation. Histogram equalisation is an im-
age enhancement technique originally developed for a sin-
gle channel, or grey-scale, image. The aim is to increase the
overall contrast in the image since doing so typical bright-
ens dark areas of an image, increasing the detail in those re-
gions which in turn can sometimes result in a more pleasing
image. Histogram equalisation achieves this aim by trans-
forming an image such that the histogram of the transformed
image is as close as possible to a uniform histogram. The
approach is justified on the grounds that amongst all possi-
ble histograms, a uniformly distributed histogram has maxi-
mum entropy[25]. Maximising the entropy of a distribution
maximises its information and thus histogram equalising an
image maximises the information content of the output im-
age. Accepting the theory, to histogram equalise an image
we must transform the image such that the resulting im-
age histogram is uniform. Now, suppose thatxi represents
a pixel value in the original image andxt

i
its correspond-

ing value in the transformed image. Let us further assume
that xi and xt

i
are continuous variables and let us denote

by p(x) andpt (xt ) the probability density functions of the
original and transformed image. We would like to transform
the original image such that the proportion of pixels less
thanxt

i
in the transformed image is equal to the proportion

of image pixels less thanxi in the original image and the
histogram of the output image is uniform. This implies:

∫ xi

0
p(x)dx =

∫ xti

0
pt (x

t )dxt = Npix

xmax

∫ xti

0
dxt . (18)

Evaluating the right-hand integral we obtain and rearranging
terms we have:

xti = xmax

Npix

∫ xi

0
p(x)dx. (19)

Eq. (19) tells us that to histogram equalise an image we
transform pixel values such that a valuexi in the original
image is replaced by the proportion of pixels in the original
image which are less than or equal toxi . A comparison of
Eqs. (15)–(17) and Eq. (19) reveals that, disregarding nota-
tion, they are the same. So, the invariant image is obtained
by simply histogram equalising each of the channels of our
original image. In practice, applying the histogram equali-
sation procedure to an image results in a transformed image
whose resulting histogram is only approximately uniform.
This is because the range of values a pixel can take is discrete
and not continuous as we assumed in the analysis above.

In the context of image enhancement it is argued[16]
that applying an equalisation to the channels of a colour im-
age separately is inappropriate since this can produce sig-
nificant colour shifts in the transformed image. However, in
the current context, we are interested not in the visual qual-
ity of the image but in obtaining a representation which is
illuminant and/or device invariant. Histogram equalisation
achieves just this provided that the rank ordering of sensor
responses is itself invariant to such changes. In addition, by
applying histogram equalisation to each of the colour chan-
nels we maximise the entropy in each of those channels. This
in itself seems desirable since our intent in computer vision
is to use the representation to extract information about the
scene and thus maximising the information content of our
scene representation ought to be helpful in itself.

Fig. 4 illustrates the effect of applying the histogram
equalisation technique to three images of the same scene,
captured by the same camera under three different illumi-
nants: a simulated daylight (D65), a fluorescent tube (TL84),
and a tungsten filament light (A). The first row shows the
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Fig. 5. The first two columns show images of the same scene captured with six different devices (four cameras and two scanners), while
columns 3 and four show the corresponding images histogram equalised.

three images as they are captured by the camera and high-
lights the fact that a change in illumination leads to a sig-
nificant change in the colours captured by the camera. To
obtain the images in the second row of the figure we his-
togram equalised each of the channels in the three images.
It is clear that the resulting images are much more similar
than are the three original images, illustrating the illumi-
nant invariant properties of the images. A second example is
shown inFig. 5, only this time the original images (first two
columns) are captured with different devices. Once again,
the histogram equalised images (columns three and four) ex-
hibit a high degree of similarity, and the representation can
be said to be device independent. While these two examples
illustrate that the technique can work, we are interested in
characterising more carefully, the degree to which the tech-
nique renders images invariant and its appropriateness for
practical application. We consider this issue in the rest of
the paper.

5. An application to colour indexing

To test the invariance properties of histogram equalisation
further we applied the method to an image retrieval task.
Finlayson et al.[1] recently investigated whether existing
invariant approaches were able to facilitate good enough
image indexing across a change in either or both illumination
and device. Their results suggested that the answer to this
question was no. Here, we repeat their experiment but using
histogram equalised images as our basis for indexing to
investigate what improvement, if any, the method brings.

The experiment is based on a database of images of
coloured textures captured under a range of illuminants and
devices. This database was used for two main reasons. First,
the database is to our knowledge the only one which con-
tains images of the same scene captured under a variety of
both device and illumination. Second, using this database
allows us to easily compare the performance of histogram
equalisation with a number of other invariant methods for
which performance on the same database has been published
in [26]. Set against these advantages is the fact that scene
content in these databases is quite restricted consisting only
of simple colour/texture patterns and it is not immediately
clear how the results would generalise to scenes with more
diverse content. However, since we are indexing purely on
colour, actual scene content is less important than colour di-
versity. Most of the texture images contain only a relatively
small number of colours, so in these terms the indexing task
is probably more difficult on this database than it would be
on a more general database of natural images or objects.

The images are available from the University of East An-
glia (UEA)1 and are described in[26]. In summary, there
are 28 different coloured textures each captured under six
different devices (four cameras and two scanners). In ad-
dition, each camera was used to capture each of the tex-
tures under three different lights so that in total there are
(3×4+2)×28=392 images. Image resolution varies with
capture device: for four out of the six devices it is approxi-
mately 500×400, while for the other two devices it is either

1http://www2.cmp.uea.ac.uk/Research/groups/compvis/
CGmainData.htm

http://www2.cmp.uea.ac.uk/Research/groups/compvis/CGmainData.htm
http://www2.cmp.uea.ac.uk/Research/groups/compvis/CGmainData.htm
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670× 508 or 745× 603. In image indexing terms this is
a relatively small database and it is chosen for the reasons
above. In our experiments we tested indexing performance
across three different conditions: (1) across illumination, (2)
across a change in device (for fixed illumination), and (3)
across a change of both device and illumination.

In each case the experimental procedure was as follows.
First, we choose a set of 28 images all captured under the
same conditions (same device and illuminant) to be our im-
age database. Next, we select from the remaining set of
images a subset of appropriate query images. So, if we
are testing performance across illumination, we select as
our query images the 56 images captured by the device
corresponding to the database images, under the two non-
database illuminants. Then, for all database and query im-
ages we derive an invariant image using either the histogram
equalisation method set forth above, or one of a range of
previously published[9–13] invariant methods. Finally, we
represent the invariant image by its colour distribution: that
is, by a histogram of the pixel values in the invariant im-
age. All results reported here are based on three-dimensional
histograms of dimension 16× 16 × 16. This allows us to
directly compare performance of our algorithm with a num-
ber of other invariant methods which were compared in an
identical experiment reported in[1]. It is worth noting that
the performance of any individual invariant method might
be improved by varying the number of histogram bins so
that these results are not optimal for any method. However,
by experimenting with different numbers of bins we have
found that the overall trend in the results is constant so that
the results we report here are a good indicator of relative
performance between invariant methods.

Indexing is performed for a query image by comparing its
histogram to each of the histograms of the database images.
The database image whose histogram is most similar to the
query histogram is retrieved as a match to the query image.
We compare histograms using the intersection method de-
scribed by Swain et al.[4] which we found to give the best
results on average. Indexing performance is measured using
average match percentile (AMP)[4] which gives a value be-
tween 0% and 100%. A value of 99% implies that the cor-
rect image is ranked amongst the top 1% of images whilst
a value of 50% corresponds to the performance we would
achieve using random matching. In addition to results for
histogram equalisation we also show results based on his-
tograms of the original images (RGB), and on Greyworld
normalised images, that is on images calculated according
to Eq. (4). Results for a variety of other invariant represen-
tations can be found in[1]: all perform significantly worse
than Greyworld.

Tables 2and3 summarise the results for the experiment
in which only illumination changes. The fourth column of
Table 2gives an overall summary of the results of this ex-
periment. These results confirm the argument that without
compensation for a change in illumination colour-based in-
dexing is poor (indexing onRGBhistograms gives very poor

Table 2
Results (AMP) of indexing experiment over a change in illuminant
(by illuminant)

Colour model Ill A D65 TL84 All lights

Greyworld 90.08 95.28 96.53 93.96
Hist. eq. 93.21 98.23 98.73 96.72

Table 3
Results (AMP) of indexing experiment over a change in illuminant
(by camera)

Colour model Camera 1 Camera 2 Camera 3 Camera 4

Greyworld 96.23 81.59 99.12 98.90
Hist. eq. 99.25 92.35 96.91 98.37

Table 4
Results (AMP) of indexing experiment over a change of device,
with illuminant fixed (by camera)

Colour model Camera 1 Camera 2 Camera 3 Camera 4

Greyworld 95.81 89.92 93.67 97.50
Hist. eq. 98.16 92.34 93.62 98.99

performance). In addition, the results show that on average
histogram equalisation outperforms Greyworld: an AMP of
close to 97% is achieved with histogram equalisation as
compared to 94% for Greyworld. The first three columns
of Table 2give further insight into the relative performance
of the two methods. In these columns AMP performance
is broken down by illumination. For example, column one
shows the average results over four different cameras when
illuminant A is chosen as the database illuminant. It is clear
that this choice of database illuminant has a significant ef-
fect on performance with results using illuminant A being
considerably less good than those achieved with either of
the other two lights. In fact, if both results for this light are
ignored performance for both histogram equalisation and
Greyworld is almost perfect.

Table 4summarises indexing results across a change in
device. In this experiment we used images taken with one
camera under a fixed light as the database images and corre-
sponding images under the same light but taken with three
different cameras as query images. Each column ofTable
4 corresponds to results obtained using images from one of
the four cameras as the database. It is clear that performance
is once again dependent on the choice of database images
but in all cases performance using histogram equalisation
is as good as or better than that obtained using a Grey-
world normalisation. Averaging results over all four cameras
gives an average match percentile of approximately 97% for
histogram equalisation as compared to 94% for Greyworld
which represents a significant performance gain using the
new method.
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Table 5
Results (AMP) of indexing experiment over a change of device
and illuminant (by device)

Colour model Cameras Scanners All devices

Greyworld 92.77 89.36 92.28
Hist. 94.99 88.48 94.54

In a final experiment we tested indexing performance al-
lowing both device and illuminant to change. In this case
we selected images taken with one of the four cameras or
the two scanners as database images and used all remaining
images as query images. In common with the other exper-
iments performance in this case is sensitive to the choice
of database images.Table 5shows that performance is sig-
nificantly reduced when using scanner rather than camera
images as the database images. When scanners are used
Greyworld and histogram equalisation perform similarly,
while results averaged over all conditions reveal a perfor-
mance improvement of approximately 3% for histogram
equalisation as compared to Greyworld.

6. Discussion

Taken as a whole the results of the three experiments de-
tailed above demonstrate a modest but significant advantage
for histogram equalisation over the previous best performing
method: Greyworld. While the results are quite good the ex-
periments do raise a number of issues. First, it is surprising
that one of the simplest invariants—Greyworld—performs
as well as it does. This performance indicates that for this
data set a diagonal scaling of sensor responses accounts for
most of the change that occurs when illuminant or device is
changed. It also suggests that any non-linear transform ap-
plied to the device responses post-capture (the functionf ()

in Eq. (5)) must be very similar for all devices: most likely a
simple power function is applied. In the context of the cur-
rent paper a second and more important issue concerns the
performance of histogram equalisation. The analysis in Sec-
tion 3.1 suggests that sensor responses are almost perfectly
rank invariant under both a change in illumination and a
change in device so that we might expect histogram equal-
isation to deliver perfect indexing; however, it does not. In
particular, while illumination invariance is very good, device
invariance is somewhat less than we might have hoped for
given the analysis in Section 3. Possible reasons for this can
be found by an examination of the images which make up
the UEA database. We found that in addition to differences
due to device and illumination, images in the database also
differ spatially: i.e. the illumination varies spatially across
the extent of an image and this spatial variation differs from
image to image. Images of the same scene under a constant
and spatially varying illuminant do not look the same after
histogram equalisation. We are currently investigating how
this spatial aspect of illumination can be dealt with.

Additional investigation of images for which indexing
performance was particularly poor reveals a number of ar-
tifacts of the capture process which might also account for
the performance. First, a number of images captured un-
der tungsten illumination have values of zero in the blue
channel for many pixels. Second, a number of the tex-
tures have uniform backgrounds but the scanning process
introduces significant non-uniformities in these regions. For
both cases the resulting histogram equalised images are far
from invariant. Excluding these images leads to a significant
improvement in indexing performance. However, for an in-
variant image representation to be of practical use in an un-
calibrated environment it must be robust to the limitations of
the imaging process. Thus we have reported results includ-
ing all images. We stress again in summary, that the simple
technique of histogram equalisation, posited only on the in-
variance of rank ordering across illumination and/or device
outperforms all previous invariant methods and in particular
gives excellent performance across changes in illumination.
Further testing on more diverse and larger images databases
is required to properly determine the power of this method
as compared to other invariant approaches.
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