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Preface 
 
Many Artificial Intelligence programs do not show enough intelligence so that 
normal people would consider them intelligent. Most of them could simply be 
called "advanced programming techniques", as usually they are highly useful 
but not intelligent programs. If we want to have a system with approximately the 
same ability to deal with the real world that we do then the system will need to 
approximate the same senses that people have and acquire most of its 
knowledge about the world by growing up as people do. In this context, 
machine learning and pattern recognition play crucial role in designing 
intelligent systems given that their main goal is concerned with the 
development of techniques which allow computers to "learn". 

Pattern Recognition is a scientific field of longstanding tradition, with origins in 
the early years of computer science. Today, Pattern Recognition has reached a 
level of maturity that allows us to build highly sophisticated systems which 
perform very different tasks. Nevertheless, its evolution has opened up a 
number of new problems, ranging from specific algorithms to system 
integration, which remain elusive and assure a long life for this research field. 
The field is progressing rapidly, and an air of excitement among researchers is 
being created by the increasing scope of applications to which machine 
learning is relevant, and by the many technical advances that have been made 
in recent years. One reason pattern recognition is such a rapidly developing 
field lies in the fact that modern societies have entered the “data era”—an 
unprecedented investment is being made in the collection of data, with archives 
being formed on an enormous scale. Biological data are being collected using 
increasingly fast machines to scan genomes, hyperspectral satellite imagery is 
being stored on a massive scale, web documents are appearing at an 
explosive rate in internet, and so on. The development of effective ways for 
extracting useful information from these data stores is an overall challenge to 
computer science as a discipline. This goal drives much of pattern recognition 
and machine learning research. Pattern recognition pushed forward to 
development of a wide spectrum of applications like search engines, medical 
diagnosis, detecting credit card fraud, stock market analysis, classifying DNA 
sequences, speech and handwriting recognition, object recognition in computer 
vision, game playing and robot locomotion. 

In this book, we claim to give an overview of recent advances in the pattern 
recognition field achieved by Spanish Network on Pattern Recognition and its 
Applications (TIC2002-12744-E). This is a thematic network devoted to 
exchange and disseminate state-of-the-art research in Pattern Recognition 
among research groups within Spain and across the rest of Europe. Member 
groups are working on challenging theoretical projects (multiple classifiers, 
feature selection, prototype classification, distance-based approaches, error-
correcting output codes, hierarchical clustering, Bayes models, etc.) as well as 



 

advanced applications of the pattern recognition field in different artificial 
intelligence projects: speech recognition, biometric verification, hyperspectral 
image classification, genre recognition, video-based face processing, medical 
endoscopy motility indexing, etc.  From its beginning the network created an 
excellent environment for scientific brainstorming, organized several scientific 
meetings with world-wide well-known scientists in the field of Pattern 
Recognition, created common databases and challenges, and developed an 
excellent and exciting environment for research and development. The 
following book containing 23 chapters gives an overview of the scientific activity 
of all groups that actively participated and contributed to the life of the network. 

We would like to thank all the authors for their help in the editing process. It is 
their competence and work which has enabled the editors to put together this 
book. 

 
Filiberto Pla, Petia Radeva and Jordi Vitrià 
 
Bellaterra & Castelló, March 2006 
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Abstract

Machine Translation technologies are becoming increasingly important in a
globalized world. PRHLT group has successfully applied pattern recognition
techniques in several projects involving both text and speech translation.

A new and very promising approach is to use a computer to assist a human
translator, thereby joining the power of computers with human expertise. In
this regard, PRHLT group has concluded an important Computer Assisted
Translation project, creating a translation engine capable of incorporating the
corrections made by human during the translation process. This ensures high
quality translations and productivity improvements.

In addition, PRHLT group was the leader of another Speech Translation
European project.

Keywords: Machine Translation, Computer-Assisted Translation.

1 Introduction

PRHLT is a research group specialized in the research field of Pattern Recognition
and Natural Language Processing, hence its name: Pattern Recognition and Human

∗ Work supported by the Agencia Valenciana de Ciencia y Tecnoloǵıa (AVCiT) under grant
GRUPOS03/031, the European Union under the IST Programme (IST-2001-32091), the Spanish
CICYT under grant TIC2003-08681-C02-02 and the AMETRA project (INTEK-CN03AD02).
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Language Technology. The group is formed by eleven Ph.D.’s and eighteen Ph.D.
students, from which fifteen are professors and assistants and the rest are research
contracts and fellowships.

The main research lines addressed at PRHLT group are: Language Translation,
Speech Recognition, Handwritten Character Recognition, Biometrics and Computer
Vision. More specifically, the group has been specially active during the last few
years in the field of Machine Translation, accomplishing to report important contri-
butions to the scientific community.

Here, we present the most important achievements of the group, divided into
four sections. In sections 2 and 3 we give a short introduction to the state-of-the-
art Machine Translation and Computer Assisted Translation, describing the main
research lines within these fields.

In section 4, we present the main projects in which our group has taken part,
describing their main purpose and their most important results.

Finally, in section 5 we list a short summary of the main papers published by
the group.

2 Machine Translation

2.1 Introduction

Machine translation (MT) is an important area to the European Union and the
Information Society Technologies. A breakthrough in this area would have an im-
portant socio-economic impact. The development of a classical MT system requires
a great human effort.

Two main approaches to MT exist, based on linguistic or statistical methods.
Machine translation can be tackled from a linguistic point of view. In this way, two
big families exist: knowledge-based and corpus-based methods. Knowledge-based
techniques formalize expert linguistic knowledge, in form of rules, dictionaries, etc.,
in a computable way. Corpus-based methods use statistical pattern recognition tech-
niques to automatically infer models from bilingual text samples without necessar-
ily using a-priori linguistic knowledge. In addition to linguistic methods, Statistical
machine translation (SMT) has proved to be an interesting framework where MT
systems can be built (quasi) automatically if adequate parallel corpora are avail-
able [1].

The MT problem can be statistically stated as follows: given a sentence s from
a source language, search for a target-language sentence t̂ which maximises the
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posterior probability1:
t̂ = argmax

t
Pr(t|s) . (1)

There are some approaches to SMT, one of them is based on two statistical
models: a target (statistical) language model and a translation model. It is commonly
accepted that a convenient way to deal with Eq. 1 is to transform it by using the
Bayes’ theorem [1]:

t̂ = argmax
t

Pr(t) · Pr(s|t) , (2)

where Pr(t) is aproximated by a target language model, which gives high probabil-
ity to well formed target sentences and Pr(s|t) accounts for source-target word(-
position) relations and is based on stochastic dictionaries and alignment models.

The widely used target language model is the (smoothed) n-gram: let I be the
length of a target sentence t,2

Pr(t) ≈
I∏

i=1

p(ti | ti−1
i−n+1) , (3)

where the probability of a target word ti depends on the last n − 1 words ti−1
i−n+1.

There are different proposals as translation models and the first ones were based
on single-word (SW) alignment models [2]. In this case, the basic assumption is that
each source word is generated by only one target word. This assumption does not
correspond to the nature of natural language; in some cases, we need to know the
context of the word to be translated. One way to upgrade this simple assumption
is the use of statistical context-dependent dictionaries as in [3]. Another way to
overcome the above-mentioned restriction of single-word models is known as the
template-based (TB) approach [4]. In this approach, an entire group of adjacent
words in the source sentence may be aligned with an entire group of adjacent target
words.

Recent works present a simple alternative to these models, the phrase-based (PB)
approach [5, 6]. In these models each sequence of words in the source sentence is
translated into another sequence of words into the target sentence with a certain
probability. Maximum Entropy, firstly introduced in this field by [7], and Recursive
Alignment techniques [8] have been also applied to capture the contextual informa-
tion.

1For simplicity, Pr(X = x) and Pr(X = x | Y = y) are denoted as Pr(x) and Pr(x | y).
2Following a notation used in [2], a sequence of the form zi, . . . , zj is denoted as zj

i . For some
positive integers N and M , the image of a function f : {1, ..., N} → {1, ..., M} for n is denoted as
fn, and all the possible values of the function as fN

1
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An alternative to Eq. 2 is to transform Eq. 1 differently:

t̂ = argmax
t

Pr(s, t) . (4)

In this case, the joint probability distribution can be adequately modelled by means
of Stochastic Finite State Transducers (SFST) [9]. These models can deal with some
source and target syntactic restrictions together with the relation between sequences
of source words and sequences of target words [10]. On the other hand, they can
be applied also for speech translation in a similar way as n-gram is used for speech
decoding [11].

Usually, MT systems take as input a text in a source language and translate it
into a text in a target language. Nonetheless, the translation process cannot only
be text-to-text but also speech-to-speech. This speech-to-speech translation will be
explained in the last point of this section.

2.2 Statistical Alignment Models

In the following sections, state-of-the-art statistical alignment models will be de-
scribed, including IBM translation models, Phrase Based translation models, Max-
imum Entropy models and Recursive Alignment models.

2.2.1 IBM Translation Models

In [2] the so-called IBM models are proposed, which are a possible way of estimat-
ing the translation model within SMT. These models are based on the concept of
alignment between the components of the translation pairs.

Let sJ
1 and tI1 be some source and target sentences of length J and I, respectively.

Formally, an alignment is a mapping between the sets of positions in sJ
1 and tI1:

a = aJ
1 ⊆ {1 · · · J}× {1 · · · I}. Alignment models to structure the translation model

are introduced in [2]. These alignment models are similar to the concept of Hidden
Markov models (HMM) in speech recognition. The alignment mapping is j → i = aj

from source position j to target position i = aj . In statistical alignment models,
Pr(sJ

1 , aJ
1 |tI1), the alignment aJ

1 is introduced as a hidden variable.
The translation probability Pr(sJ

1 , aJ
1 |tI1) can be rewritten as follows:

Pr(sJ
1 , aJ

1 |tI1) =
J∏

j=1

Pr(sj, aj |sj−1
1 , aj−1

1 , tI1)

=
J∏

j=1

(
Pr(aj |sj−1

1 , aj−1
1 , tI1) · Pr(sj|sj−1

1 , aj
1, t

I
1)

)
. (5)
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Five IBM models exist, from IBM model 1 to IBM model 5, of increasing
complexity, which model in a different way the relation between source and target
words.
Learning IBM statistical alignment models

All the necessary for estimating IBM alignment models is described in [2]. The
estimation of the parameters of these models is carried out by maximum-likelihood
estimation via the EM algorithm [12]. The public available tool GIZA++ [13] is a
possible implementation to perform this estimation.
Search

Given a source sentence sJ
1 , the aim of the search in statistical machine transla-

tion is to look for a target sentence t̂ that maximises the product Pr(tI1) · Pr(sJ
1 |tI1).

Different algorithms have been proposed to searching with IBM models. The basic
idea of most of these algorithms is to generate partial hypotheses about the target
sentence in an incremental way. Each of these hypotheses is composed by a prefix of
the target sentence, a subset of source positions that are aligned with the positions
of the prefix of the target sentence and a score. New hypotheses can be generated
from a previous hypothesis by adding a target word(s) to the prefix of the target
sentence that is (are) the translation of a source word(s) that is (are) not translated
yet.

The search process, when using a statistical alignment model and depending on
the search algorithm used, yields to search criteria. In general, eq. 2 can be rewritten
as follows:

t̂ = arg max
t

{Pr(t) · Pr(s|t)}

= arg max
t

{
Pr(t) ·

∑
a

Pr(s,a|t)
}

(6)

and using the maximum aproximation we have:

t̂ ≈ arg max
t

{
Pr(t) · max

a
Pr(s,a|t)

}
= arg max

〈t,a〉
{Pr(t) · Pr(s,a|t)} (7)

Different search strategies have been proposed to define the way in which the
search space is organized. Namely Stack-Based Decoding algorithms, Dynamic Pro-
gramming algorithms and Greedy Decoding algorithms.

Pattern Recognition : Progress, Directions and Applications 5



• Stack-Based Decoding

Stack Decoding algorithm, also called A* algorithm [14], attempts to generate
partial solutions or hypotheses, until a complete sentence is found. These
hypotheses are stored in a stack and sorted using a score3. Typically, this
measure is a probability value given by both the translation and the language
models. The decoder follows a best-first strategy in order to achieve an optimal
hypothesis:

1. Initialization of the stack with an empty hypothesis

2. Iteration

(a) Pop h (the best hypothesis) off the stack
(b) If h is a complete sentence, output h and end
(c) Expand h
(d) Go to step 2a

A depth-first strategy can also be employed, as in [15] that utilises a set of
stacks in order to perform the search. Concretely, the algorithm uses a dif-
ferent stack to store the hypothesis depending on which words in the source
sentence have been translated. This procedure allows to force the expansion
of hypotheses with a different degree of completion. In each iteration, the
algorithm covers all stacks with some hypotheses and extends the best one for
each.

• Dynamic Programming

Dynamic programming [16, 17] creates a table of solutions to all subproblems
that might occur. It is based on the principle of optimality, where the tradi-
tional term policy is used for a decision rule that determines the next state
given a predecessor state. This optimality principle is stated as follows: an
optimal policy has the property that, whatever the initial state and decision
are, the remaining decisions must constitute an optimal policy with regard to
the state resulting from the first decision.

• Greedy Decoding

Greedy decoders were proposed in [14] for the first time. The main difference
between this search algorithm and the ones presented in previous sections is
that it does not follow an incremental process to build an output hypothesis.
It starts from an initial complete hypothesis and iterates a process in which,

3The score is actually the log of the resulting probability.

6 Pattern Recognition : Progress, Directions and Applications



in every iteration, an operation (or transformation) is applied to the current
hypothesis to obtain a better one. The initial hypothesis is constructed by
choosing the best inverse translation of every word of the input sentence. This
initialization method provides a monotone alignment. A different initialization
method which obtains better results is proposed in [17] where the Viterbi
alignment (for a specific model) is also applied.

2.2.2 Phrase-based alignment models

In SW alignment models, words are translated individually, without considering
the context. PB alignment models constitute an interesting and simple alternative
that allows to model this contextual information [5, 6]. The principal innovation of
these methods is that they attempt to calculate the translation probabilities of word
sequences (phrases) rather than only single words.

One shortcoming of the PB alignment models is its generalization capability,
since only sequences of segments that have been seen in the training corpus are
accepted.

The derivation of the PB models is based on the concept of bilingual segmen-
tation, i.e. sequences of source words and target words. It is assumed that only
segments of contiguous words are considered, the number of source segments is the
same as the number of target segments (say K) and each source segment is aligned
with only one target segment and vice versa.

The main estimation technique of these models is based on single-word align-
ments, usually obtained from the public available software GIZA++ [18]. Thot
Toolkit [19], developed at PRHLT, performs this kind of estimation.

The search process described in 2.2.1 for IBM models is very similar to the one
for PB models. Here we can also adopt a depth-first strategy as defined in [20].
Additionally, a dynamic programming based search is described in [21], which is
implemented in the public available tool called Pharaoh [22].

2.2.3 Maximum Entropy models

Current statistical machine translation systems are mainly based on statistical word
lexicons. However, these models are usually context-independent, therefore, the
disambiguation of the translation of a source word must be carried out using other
probabilistic distributions (distortion distributions and statistical language models).
One efficient way to add contextual information to the statistical lexicons is based
on maximum entropy modeling [23]. In that framework, the context is introduced
through feature functions that allow us to automatically learn context-dependent

Pattern Recognition : Progress, Directions and Applications 7



lexicon models.
In a first approach [7], maximum entropy modeling is carried out after a process

of learning standard statistical models (alignment and lexicon). In a second approach
[24], the maximum entropy modeling is integrated in the expectation-maximization
process of learning standard statistical models.

2.2.4 MAR

MAR [8] is designed so that the alignment between two sentences can be seen in
a structured manner: each sentence is divided into two parts and they are put
in correspondence; then each of those parts is similarly divided and related to its
translation. In this way, the alignment can be seen as a tree structure which aligns
progressively smaller segments of the sentences. This recursive procedure gives its
name to the model: MAR, which comes from “Modelo de Alineamiento Recursivo”,
which is Spanish for “Recursive Alignment Model”.

IBM model 1 is not adequate to describe complex translations in which compli-
cated patterns and word order changes may appear. Nevertheless, this model can
do a good job to describe the translation of short segments of texts.

To overcome that limitation of the model the following approach will be taken: if
the sentence is complex enough, it will be divided in two and the two halves will be
translated independently and joined later; if the sentence is simple, the IBM model
1 will be used.

2.3 Finite State Transducers Inference

Stochastic Finite-State Transducers (SFSTs) can be learned automatically from
bilingual sample pairs. SFSTs are finite-state networks that accept sentences from
a given input language and produce sentences of an output language.

A particular case of finite-state transducers are known as subsequential trans-
ducers (SSTs) [25]. These are essentially finite-state transducers with the restriction
of being deterministic. The main advantage of SST relies on allowing typical word
reorderings in the translated sentence in order to guarantee a correct output. This
is possible because of SST are able to delay the emission of output symbols until the
corresponding prefix of the input sentence is parsed/analyzed.

OSTIA and OMEGA algorithms are devoted to the automatic generation of
SSTs. The first of this two algorithms is based only in finite-state techniques while
OMEGA is a hybrid method that combines this techniques with some additional
information extracted from statistical methods. Finally, a third hybrid method
called GIATI that infers SFSTs will be studied.

8 Pattern Recognition : Progress, Directions and Applications



2.3.1 An Onward Subsequential Transducer Inference Algorithm: OSTIA

Given a set of training sentence pairs, the OSTIA efficiently learns a SST that
generalises the training set [25]. The algorithm builds a straightforward prefix-tree
representation of all the training pairs and moves the output strings toward the root
of this tree as much as possible, leading to an “onward” tree representation. Finally
a state merging process is carried out. The algorithm guarantees identification of
total subsequential functions in the limit, that is, if the unknown target translation
exhibits a subsequential structure, convergence to it is guaranteed whenever the set
of training samples is representative.

Nevertheless, there are partial subsequential functions for which OSTIA inference
is troublesome. This limitation can be solved by an extension, called OSTIA-DR
(OSTIA with Domain and Range constraints) [26] in which the learnt transducers
only accept input sentences and only produce output sentences compatible with the
input/output language models.

2.3.2 Hybrid (statistical/finite-State) inference algorithms

An inconvenience of finite-state transducer learning techniques like OSTIA (and all
its extensions) is that they seem to require large amounts of training data to produce
adequate results. However, some byproducts of statistical translation models [1] can
be useful to improve the learning capabilities of finite-state models.
OMEGA

The OMEGA (for the Spanish OSTIA Mejorado Empleando Garant́ıas y Alin-
eamientos) [27] algorithm is an extension of the OSTIA algorithm that incorporates
some additional information extracted from statistical translation models into the
learning process. Specifically, it allows the use of statistical dictionaries and align-
ments estimated from the same training pairs that will be employed by OMEGA.
These stochastic dictionaries and alignments establish input-to-output, word and
word position relationships that enrich OSTIA algorithm. In the present work,
these statistical translation models were estimated using the GIZA++ toolkit [13],
which implements IBM statistical models [1].

An stochastic extension of OMEGA, called OMEGA-P, can be defined with the
same transition and final state probability estimation strategy than OSTIA-P.
GIATI

An algorithm for learning SFSTs is the GIATI technique [10]. Given a finite
sample of string pairs, it works in three steps:

1. Building training strings. Each training pair is transformed into a single string

Pattern Recognition : Progress, Directions and Applications 9



from an extended alphabet to obtain a new sample of strings.

2. Inferring a (stochastic) regular grammar. Typically, a smoothed n-gram lan-
guage model is inferred from the set of strings obtained in the previous step.

3. The transformation of the inferred regular grammar into a transducer is trivial.
The symbols associated to the grammar rules are replaced by source/target
symbols, thereby converting the grammar inferred in the previous step into a
transducer.

The transformation of a parallel corpus into a single string corpus is performed
using statistical alignments. As in the OMEGA algorithm, these statistical align-
ments were calculated with the GIZA++ toolkit.

2.4 Speech to Speech translation

From a formal point of view, the problem of speech to speech translation (S2ST) can
be stated as follows: given an utterance x from a source language, we have to search
for a target sentence t̂ for which the next posterior probability is maximum:

t̂ = argmax
t

Pr(t | x) . (8)

The most crude approximation consists in using a conventional speech recogni-
tion system to decode x into a sentence ŝ from the source language [28]:

ŝ = argmax
s

Pr(s | x) = argmax
s

Pr(s) · Pr(x | s) , (9)

where a n-gram or a stochastic finite-state automaton is used as a source language
model to estimate Pr(s) and hidden Markov models (HMM) are used as acoustic
models to estimate Pr(x | s) [29, 28]. Once ŝ is obtained, it is used as the given
s in Eq. 2 or Eq. 4 to obtain t̂. This is often referred to as a “serial” or “loosely
coupled” S2ST approach.

In a more formal framework [30], every possible decoding of a source utterance
x is considered as the value of a hidden variable s. Correspondingly, Eq. 8 can be
rewritten as:

t̂ = argmax
t

∑
s

Pr(t, s | x) . (10)

If it is further assumed that Pr(x | s, t) does not depend on t (which does not always
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hold, but it is reasonable in practice [30]), from Eq. 10 we obtain:

t̂ = argmax
t

∑
s

Pr(s, t) · Pr(x | s) (11)

= argmax
t

∑
s

Pr(t) · Pr(s | t) · Pr(x | s) . (12)

The sum in Eq. 11 can be approximated by a maximization, Pr(s, t) can be
modeled by a SFST and HMMs can be used for modeling Pr(x | s). This way, the
acoustic models can be easily embedded in the translation model, yielding a Viterbi-
based quasi-optimal “integrated” or “tightly coupled” approach to S2ST [11]. This
approach has been deeply explored in the EuTrans project (see section 4.1).

3 Computer-assisted translation

State-of-the-art machine translation (MT) techniques are still far from producing
high quality translations. This drawback leads us to introduce an alternative ap-
proach to the translation problem that brings human expertise into the MT scenario.
This idea was proposed in [31] and can be illustrated as follows. Initially, the human
translator is provided with a possible translation for the sentence to be translated.
Unfortunately in most of the cases, this translation is not perfect, so the translator
amends it and asks for a translation of the part of the sentence still to be translated
(completion). This latter interaction is repeated as many times as needed until the
final translation is achieved.

The scenario described in the previous paragraph can be seen as an iterative
refinement of the translations offered by the translation system, that while not hav-
ing the desired quality, can help the translator to increase his/her productivity.
Nowadays, this lack of translation excellence is a common characteristic in all ma-
chine translation systems. Therefore, the human-machine synergy represented by
the Computer-Assisted Translation (CAT) paradigm seems to be more promising
than fully-automatic translation in the near future.

The CAT approach has two important aspects: the models need to provide ade-
quate completions and they have to do so efficiently under usability constrains. To
fulfill these two requirements, stochastic finite-state transducers (SFST) and phrase-
based (PB) models have proved in the past to be able to provide adequate transla-
tions. In addition, it is shown in this paper that efficient searching algorithms can
be easily adapted in order to provide completions (rather than full translations) in
a very efficient way.
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Interactive search
The concept of interactive search is closely related to the CAT paradigm. This

paradigm introduces a new factor tp into the general MT equation (Eq. 1). tp

represents a prefix of the target sentence obtained as a result of the interaction
between the human translator and the MT system.

In each iteration, a prefix (tp) of the target sentence has somehow been fixed by
the human translator in the previous iteration and the CAT system computes its
best (or n-best) translation suffix hypothesis (t̂s) to complete this prefix.

Given tpt̂s, the CAT cycle proceeds by letting the user establish a new, longer
acceptable prefix. To this end, he or she has to accept a part (a) of tpt̂s (or, more
typically, just a prefix of t̂s). After this point, the user may type some keystrokes
(k) in order to amend some remaining incorrect parts. Therefore, the new prefix
(typically) encompasses tp followed by the accepted part of the system suggestion,
a, plus the text, k, entered by the user. Now this prefix, tpak, becomes a new tp,
thereby starting a new CAT prediction cycle.

Ergonomics and user preferences dictate exactly when the system can start its
new cycle, but typically, it is started after each user-entered word or even after each
new user keystroke.

Perhaps the simplest formalization of the process of hypothesis suggestion of a
CAT system is as follows. Given a source text s and a user validated prefix of the
target sentence tp, search for a suffix of the target sentence that maximises the a
posteriori probability over all possible suffixes:

t̂s = argmax
ts

Pr(ts | s, tp) . (13)

Taking into account that Pr(tp | s) does not depend on
ts, we can write:

t̂s = argmax
ts

Pr(tpts | s) , (14)

where tpts is the concatenation of the given prefix tp and a suffix ts. Eq. 14 is similar
to Eq. 2, but here the maximisation is carried out over a set of suffixes, rather than
full sentences as in Eq. 2. This joint distribution can be adequately modeled by
means of SFSTs [32].

The main critical aspect of the interactive CAT system is the response time.
To deal with this issue, one solution is the use of a word graph. Therefore, the
above mentioned maximisation problem has been devised in two phases. The first
one copes with the extraction of a word graph W from a SFST T given a source
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sentence s. In a second phase, the search of the best translation suffix (or suffixes)
is performed over the word graph W given a prefix tp of the target sentence.

4 Research projects

In the following sections, some of the main research projects developed at PRHLT
will be summarized.

4.1 EUTRANS:Example-Based Language Translation Systems

The EuTrans project (ESPRIT-LTR Project Number 30.268) is aimed at using
Example-Based (EB) techniques for developing MT systems for limited-domain tasks
which require text and/or speech input.

EuTrans was planned as a two stages project. In the first phase basic demon-
stration systems for text-input and speech-input translation were developed. These
prototypes rely on example-based (EB) techniques for learning a kind of finite-
state translation models, known as Subsequential Transducers. These models lend
themselves particularly well to being integrated with acoustic-phonetic, lexical and
syntactic models in order to perform speech-input MT. This allows the building of
systems in which all the models required for each new application are automatically
learned from training data.

Following the successful paradigm started in the first phase, particular attention
was paid to the tight integration of translation and speech recognition, with the aim
of achieving a high degree of robustness in speech-input operation.
Relevant results

The feasibility of these EB techniques and their usefulness from a final-user per-
spective were demonstrated by building both text-input and speech-input prototypes
following user-centered methodologies.

Important benefits were obtained from the results:

• Example-Based approaches allow for automatically building MT systems from
training examples of each considered task. This reduces the development costs
of MT systems in many specific domains, as compared with more traditional
Knowledge-Based approaches.

• Tight integration of translation and speech models allows for low-cost, real-
time, robust speech-input translation for limited-domain applications, in con-
trast with the comparatively high computational demands often entailed by
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more conventional approaches based on a significantly less robust ”first-recognition
then-translation” paradigm.

4.2 SISHITRA:Hybrid translation systems from Valencian to Castil-
ian

SisHiTra (Hybrid Translation System) project (CICYT FEDER TIC2000-1599-C02)
that combines knowledge-based and corpus-based techniques to produce a Spanish-
to-Catalan machine translation system with no semantic constraints. Spanish and
Catalan are languages belonging to the Romance language family and have a lot of
characteristics in common. SisHiTra makes use of their similarities to simplify the
translation process. A SisHiTra future perspective is the extension to other language
pairs (Portuguese, French, Italian, etc.).

Knowledge-based techniques are classical approaches to tackle general scope ma-
chine translation systems. Nevertheless, inductive methods have shown competitive
results dealing with semantically constrained tasks.
Relevant results

Innovative methodologies have been used to represent the different knowledge
sources, such as disambiguation modules based on Hidden Markov Models or dic-
tionaries taking advantage of stochastic transducers.

4.3 AMETRA:Computer assisted translation based on translation
memories

The goal of the AMETRA project (INTEK-CN03AD02) was to make a computer-
assisted translation tool from the Spanish language to the Basque language under the
memory-based translation framework. The system is based on a large collection of
bilingual word-segments. These segments are obtained using linguistic or statistical
techniques from a Spanish-Basque bilingual corpus consisting of sentences extracted
from the Basque Country’s official government record.
Relevant results

The success of a statistical machine translation system relies on the availability of
a large bilingual corpus to be used to train different translation and language models.
Thus, is specially important the quality of such a corpus in terms of complexity.
Ideally, the corpus should be perfectly split into sentences, be free of noise and errors
and be free as possible of incorrect translations. In practice, this is not usually the
case. New corpora usually require substantial preprocessing as is the case with the
AMETRA corpus. In this project is shown how the statistical techniques can be
succesfully applied and how the statistical and the translation memory approaches
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can be combined to a translation of Spanish to Basque.

4.4 TT2: TransType2

The aim of TT2 (IST-2001-32091) is to develop a Computer-Assisted Translation
(CAT) system that will help solve a very pressing social problem: how to meet
the growing demand for high-quality translation. The innovative solution proposed
by TT2 is to embed a data driven Machine Translation (MT) engine within an
interactive translation environment. In this way, the system combines the best of
two paradigms: the CAT paradigm, in which the human translator ensures high-
quality output; and the MT paradigm, in which the machine ensures significant
productivity gains. Another innovative feature of TT2 is that it will have two input
modalities: text and speech. Six different versions of the system will be developed
for English, French, Spanish and German (with English as the pivot).
Relevant results

TT2 is based on the premise that we can improve the productivity of translators
by reducing the number of keystrokes needed for entering a translation. Profes-
sionals at two translation bureaus were testing the prototypes, demonstrating that
TransType2 allows to increase the translator’s productivity by between 15 and 20%
on average.

4.5 ITEFTE:Finite State transducer inference to machine transla-
tion and machine translation assisted in specific tasks

ITEFTE project (CICYT TIC2003-08681-C02-02) aims to develop finite-state tech-
nologies for translation, such as:

a) Machine translation inference and computer assisted translation in constraint
domains

b) Building translation memories of easy maintenance and fast answer

c) Producing speech to speech translation systems in constraint domains

d) Building parallel morphosyntactically-anotated corpora

e) Developing of text classifiers in order to obtain specialized translators

f) Implementation of statistical and geometric aligners enriched with linguistic in-
formation
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5 Latest contributions of PRHLT in Machine Transla-

tion and Computer-Assisted Translation

In this section, a review of the most significant contributions of the PRHLT group
to the field of Machine Translation and Computer-Assisted Translation is presented.

5.1 Machine Translation

The PRHLT group most important publications organized by topics are listed below:

• Grammatical Inference:

J. Oncina, P. Garćıa, and E. Vidal. Learning subsequential transducers for
pattern recognition interpretation tasks. IEEE Trans. on PAMI, 15(5):448–
458, 1993.

J. M. Vilar. Improve the learning of subsequential transducers by using align-
ments and dictionaries. In ICGI ’00, pages 298–311, London, UK, 2000.
Springer-Verlag.

D. Picó and F. Casacuberta. Some statistical-estimation methods for stochas-
tic finite-state transducers. Machine Learning, 44:121–142, Jul.-Aug. 2001.

E. Vidal and F. Casacuberta. Learning finite-state models for machine trans-
lation. In Grammatical Inference: Algorithms and Applications. Proceedings
of the 7th International Coloquium ICGI 2004, volume 3264 of LNAI, pages
16–27. Springer, Athens, Oct. 2004. Invited conference.

F. Casacuberta, E. Vidal, and D. Picó. Inference of finite-state transducers
from regular languages. Pattern Recognition, 38:1431–1443, 2005.

E. Vidal, F. Thollard, F. Casacuberta C. de la Higuera, and R. Carrasco.
Probabilistic finite-state machines - part I & II. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 27(7):1013–1039, 2005.

• IBM model search/decoding algorithms

J. Tomás and F.Casacuberta. A statistical spanish-catalan translator: a pre-
liminary version. In Proceedings VIII Simposium Nacional de Reconocimiento
de Formas y Análisis de Imágenes, pages 103–110, Bilbao, May 1999.

I. Garćıa-Varea and F. Casacuberta. Search algorithms for statistical machine
translation based on dynamic programming and pruning techinques. In MT
Summit VIII, pages 115–120, September 2001.
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D. Ortiz, I. Garćıa-Varea, and F. Casacuberta. An empirical comparison of
stack-decoding algorithms for statistical machine translation. In Pattern Re-
congnition and Image Analysis, First Iberia Conference, volume 2652 of Lec-
ture Notes in Computer Science, pages 654–663. Springer-Verlag, Puerto de
Andratx, Mallorca, June 2003.

• Maximum Entropy

I. Garćıa-Varea and F. Casacuberta. Maximum entropy modeling: A suitable
framework to learn context-dependent lexicon models for statistical machine
translation. Machine Learning, 60:135–158, 2005.

• Phrase-Based models

J. Tomás and F. Casacuberta. Monotone statistical translation using word
groups. In Proceedings of the MT Summit VIII, pages 357–361, Santiago de
Compostela, 2001.

D. Ortiz, I. Garćıa-Varea, and F. Casacuberta. Thot: a toolkit to train phrase-
based statistical translation models. In Tenth MT Summit. AAMT, Phuket,
Thailand, Sep. 2005.

• Translation models

J. M. Vilar and E. Vidal. A recursive statistical translation model. In Associ-
ation of Computational Linguistics, editor, Proceedings of the ACL Workshop
on Building and Using Parallel Texts, Ann Arbor, Michigan, USA, June 2005.

J. Andrés. N-HSEST: N-History Segmented Enumerable Stochastic Trans-
ducer. Technical Report DSIC-II/16/05, D.S.I.C., U.P.V., Nov. 2005.

5.2 Computer Assisted Translation

The PRHLT group most important publications are listed below:
Atos Origin, Instituto Tecnológico de Informática, RWTH Aachen, RALI Lab-

oratory, Celer Soluciones and Société Gamma and Xerox Research Centre Europe.
TransType2 - Computer Assisted Translation. Project Technical Annex., 2001.

E. Vidal, F. Casacuberta, L. Rodŕıguez, J. Civera, and C. Mart́ınez. Computer-
assisted translation using speech recognition. IEEE Transaction on Speech and Au-
dio Processing, In press, 2005.

S. Barrachina, O. Bender, F. Casacuberta, J. Civera, E. Cubel, S. Khadivi,
A.L. Lagarda, H. Ney, J. Tomás, E. Vidal, and J.M. Vilar. Statistical and finite-
state approaches to computer-assisted translation. Computational Linguistics, In
preparation.
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I. Garćıa-Varea, D. Llorens, C. Mart́ınez, S. Molau, F. Nevado, M. Pastor,
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Abstract

Automatic Speech Recognition is one of the most important areas of in-
terest in Pattern recognition. We propose a statistical approach to limited-
domain speech recognition, which uses finite-state modeling at all levels. These
approach is applied for different tasks of increasing interest: dialogue and
computer-assisted transcription of speech. Since current speech recognition sys-
tems are not error-free, we present the use of Pattern Recognition techniques
to predict the reliability of each hypothesized word. A summary of the most
relevant results is reported over a wide variety of tasks, that show the real
possibilities of these techniques.

Keywords: Stochastic finite-state models, speech recognition, confidence mea-
sures, computer-assisted transcription of speech, dialogue.

1 Introduction

Since the origins of Computer Science, one of the most retailing problems has been
the possibility of communicating with a computer using the most natural way for a
human being: speech. The achieving of this objective would spread the use of com-
puter systems to the vast majority of human beings, who could then take advantage
of all the computer applications.

The initial solutions provided to speech recognition (i.e., the mere activity of
knowing the exacts words that were uttered by the speaker) were mostly based
on pure Artificial Intelligence techniques (fuzzy techniques were usual). All these

∗ This work has been partially supported by Agencia Valenciana de Ciencia y Tecnoloǵıa (GRU-
POS03/031) and the Spanish project ITEFTE (TIC2003-08681-C02-02).
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systems required the use of experts to build the knowledge base the recognition
system was based on. As a consequence, these systems were expensive and hard to
adapt to different situations.

The complementary approach is inspired in Statistical Pattern Recognition.
With this approach, we try to build the speech recognition system with the min-
imal human intervention, getting the most information necessary for the system
from available data using statistical techniques. With the increasing of available
speech data in the 80s, this approach became more and more popular, and finally it
overcome nearly all the other approaches.

The great success of the speech recognition systems relied on the use of statis-
tical inference techniques to estimate the parameters of certain models. Due to the
sequential nature of the speech signal, the kind of models that demonstrated more ef-
fective for this task were Finite-State Models, and more specifically, the probabilistic
version of these models.

In the section 2, the Finite-State Model application to speech recognition is
presented, as long as the specific kind of models which is usually used and an overview
of the processes involved in the speech recognition algorithms. In section 3 a different
number of speech recognition applications based on Pattern Recognition techniques
are presented: speech recognition, estimation of confidence measures, computer-
assisted transcription and dialogue systems.

2 Automatic Speech Recognition based on Finite-State

Models

Automatic Speech Recognition (ASR) is an interesting problem that is conveniently
addressed in the Pattern Recognition framework with Stochastic Finite-State models
(FSM). The ASR problem can be stated from a stochastic point of view as follows [1]:
suppose that Θ is a sequence of characteristic vectors that represents the acoustic
signal, and W = 〈w1 . . . wn〉 is a sequence of n words. The probability Pr(W |Θ)
is the probability of sequence W being uttered from the acoustic sequence Θ. The
ASR problem can be stated as the problem of maximizing the probability Pr(W |Θ)
as follows:

W ∗ = arg max
W

Pr(W |Θ) = arg max
W

Pr(W ) Pr(Θ|W ) (1)

where:

• Pr(W ) is the language model probability and represents the probability of the
word sequence;
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• Pr(Θ|W ) is the acoustic probability and represents the probability of observing
the sequence of characteristic vectors Θ when the word sequence W is uttered.

The interest of this decomposition of the ASR problem derives from the fact that
there exist powerful techniques both to solve the problem of the language modeling
and the acoustic modeling. We now describe these techniques.

The computation of the acoustic probability Pr(Θ|W ) is carried out by supposing
that each word of the sequence W = 〈w1 · · ·wn〉 is composed by the concatenation
of a sequence of acoustic units D(w) = 〈u1 · · · u|w|〉. In this way, the value Pr(Θ|W )
is computed from the probabilities that are obtained for each acoustic unit of W as
follows:

Pr(Θ|W ) =
n∏

i=1

|D(wi)|∏
j=1

Pr(ouj
wi) (2)

where o
uj
wi ∈ Θ is the acoustic sequence that is generated by the acoustic unit uj of

the word wi.
The most successful approach that is used to represent the acoustic units is based

on Hidden Markov Models (HMMs) [2, 3].
A HMM is a stochastic function of a Markov chain. A HMM is composed of

two stochastic processes: on the one hand, a hidden process that represents the
time evolution of the Markov chain through several states according to a transi-
tion probability function; on the other hand, an observation process according to a
distribution associated to each state.

The Markov chain is represented through a stochastic FSM with two distribu-
tions: the transition probabilities and the emission probabilities (see Figure 1).

There exists robust techniques that can be used to estimate these distributions
from a set of samples. The most usually technique consists of maximizing the likeli-
hood of the sample with the Baum-Welch algorithm, that is also known as forward-
backward algorithm [4, 5].

The language model of an ASR system defines a structure in the language of a
task. It attaches a probability to each word sequence W and restricts the possible
sequences.

Given a word sequence W = 〈w1 · · ·wn〉, its probability can be computed as:

Pr(W ) =
n∏

i=1

Pr(wi|w1 · · ·wi−1) (3)

where Pr(wi|w1 · · ·wi−1) is the conditional probability of occurring wi after the
sequence w1 · · ·wi−1.
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Figure 1: Example of Hidden Markov Model: aij are the transition probabilities and
bk(ot) are the emission probabilities.

The most successful approach that is currently used in ASR are n-gram models [1]
(specially bigram models (n = 2) and trigram models (n = 3)). In these models,
the probability of occurring a word wi depends only on the previous N − 1 previous
words:

Pr(W ) =
n∏

i=1

Pr(wi|wi−N+1 · · ·wi−1) (4)

These models can be estimated from a set of sentences. The model can be
represented with a stochastic FSM (see Figure 2). In this model, each edge is
labeled with a word and a probability, and the transitions between edges represent
possible sequence of words. A path from an initial state to a final state represents
a possible sequence of words of the language, and its probability is the product of
the probabilities that appear in the path. Given that the set of samples is finite,
smoothing techniques are applied in order to model unseen events [6].

Given the HMMs and the language model which can be represented like FSMs,
an integrated FSM is constructed with this information. This integrated FSM is
constructed by replacing each edge in the language model by the lexical model of
the word associated to the edge. This lexical model represents the sequence of
acoustic units of the word (see Figure 3). Then, each edge in the lexical model is
substituted by the HMM corresponding to the acoustic unit (see an example of this
composition in Figure 4).
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"brillo" (0.17)
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"seis" (0.11)

"siete" (0.11)

"ocho" (0.11)

"nueve" (0.11)
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"canal" (1)

"canal" (1)
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"canal" (1)

"canal" (1)

"canal" (1)

"canal" (1)

"canal" (1)

Figure 2: Stochastic FSM for modeling the speech control of a TV.
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p = 1p = 1p = 1p = 1p = 1
i = 1 f = 1

k i e r o

Figure 3: Example of Stochastic FSM for the lexical representation of the Spanish
word “quiero”.

The recognition problem can be stated as a search problem in the integrated
automaton. Given an acoustic sequence, the problem is to find the hypotheses W ∗

(sequence of states) that maximizes the probability Pr(W |Θ). The search problem
can be efficiently carried out with the Viterbi algorithm [7, 8].
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(b) Lexical expansion
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(c) Acoustic Expansion

Figure 4: Example of the integration process of the lexical and phonetic knowledge
into an integrated FST.
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3 Applications

In this section we show different speech recognition applications based on Pattern
Recognition techniques: speech recognition based on FSMs, confidence estimation,
computer-assisted transcription and dialogue systems.

3.1 Speech recognition

In this section we show the assessment of a speech recognizer based on FSMs through
experiments with three limited-domain tasks of increasing difficulty.

ATROS (Automatically Trainable Recognizer of Speech) is a continuous-speech
recognition/translation system which uses stochastic FSM at all its levels: acoustic-
phonetic, lexical and syntactic/translation [9, 10]. All these models can be learn
automatically from speech and text data. The use of FSMs allows the system to
obtain the translation and the recognized sentences synchronously.

ATROS was developed within the framework of the European project EuTrans.
The EuTrans project was aimed at developing machine translation systems to assist
human to human (speech) communications in specific domains [11]. The specific
domain was the translation of queries, requests and complains made by telephone
(or microphone) to the front desk of a hotel.

Three tasks of different degree of difficulty were developed within the EuTrans
project. In the first one (Eu-0), Spanish to English translation systems were learned
from a big and well controlled training corpus (about 170k different pairs). In the
second one (Eu-I), also from Spanish to English, the systems were learned from a
random subset of 10k pairs from the previous corpus Eu-0, which was established as
a more realistic training corpus for the kind of application considered. In the third
(Eu-II), from Italian to English, the systems were learned from a small training
corpus (about 3k pairs) that was obtained from a transcription of a spontaneous
speech corpus. A summary of the main features of the EuTrans corpus is presented
in Table 1.

The Eu-0 and Eu-I test-set speech corpus consists of telephone and microphone
speech-input. The telephone-input test-set was similar except that the number of
test speakers were 10 rather than 4.

3.1.1 Experimental Results

Three learning finite-state methods have been studied. The first method is a clas-
sical trigram model [1]. The second ones are OMEGA [12] and GIATI [13], which
are finite-state transducers whose are used as source language models. These meth-
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Table 1: Summary of the EuTrans corpus

Eu-0 Eu-I Eu-II

Training Text

# Sentences 490k 10k 3k
# Different Sentences 168k 10k 3k
Vocabulary 686 2.459
Bigram test-set perplexity 6.8 8.6 31

Speech Test

time 0.5h 0.8h
# Speakers 4 24
Speech utterances 336 278
Running words 3k 5k

ods are expected to manage cross-lingual syntactic constraints that improve ASR
performance [11]. To assess the performance of the models, the (Recognition) Word
Error Rate (WER) was adopted. This performance criterion, widely used in speech
recognition, is basically the minimum number of substitution, insertion and deletion
operations that have to be performed to convert the word string produced by a
system into a given reference word string. The best results are summarized in the
table 2.

Table 2: Assessment results

WER (%)
Speech Signal Models Eu-0 Eu-I Eu-II
microphone trigrams 2.4 4.1 -

GIATI 2.3 4.4 -
OMEGA 4.1 13.6 -

telephone trigrams 8.6 11.6 22.1
GIATI 7.5 10.5 32.0
OMEGA 8.4 18.3 52.5

Results show that for simple tasks and using sufficient training data, all these
techniques yield good results, especially for telephone speech signal. As training data
shrinks, results degrade gradually. Finally, for more complex tasks, with (relatively)
small amount of training data, results become generally worse. OMEGA performs
badly due to inference problems.
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3.2 Confidence measures for speech recognition

Current speech recognition systems are not error-free and, in consequence, it is
desirable for many applications to predict the reliability of each hypothesized word.
From our point of view, this can be seen as a conventional pattern recognition
problem in which each hypothesized word is to be transformed into a feature vector
and then classified as either correct or incorrect [14, 15]. The basic problem then
is to decide which predictor (pattern) features and classification model should be
used.

The problem of finding appropriate (pattern) features has been extensively stud-
ied by several authors. Some of them have noticed that correctly recognized words
are often among the most probable hypotheses. Accordingly, they suggest the use
of features derived from n-best lists [16, 17] or word graphs [18, 19].

To design an accurate pattern classifier, we first consider a word-dependent naive
Bayes model in which the estimation of class posteriors is carried out using conven-
tional relative frequencies (we assume that features are discrete). Due to the lack of
training data, this model underestimates the true probabilities involving rare words
and the incorrect class. To deal with this problem of data spareness, our basic model
is smoothed with a generalized, word-independent naive Bayes model.

3.2.1 Naive Bayes model

The class variable is denoted by c; c = 0 for correct and c = 1 for incorrect. Given a
hypothesized word w and a D-dimensional vector of features x, the class posteriors
can be calculated via the Bayes’ rule as

P (c|x, w) =
P (c|w)P (x|c, w)∑
c′ P (c′|w)P (x|c′, w)

(5)

For simplicity, the model includes the naive Bayes assumption that the features
are mutually independent given a class-word pair,

P (x|c, w) =
D∏

d=1

P (xd|c, w) (6)

Therefore, the basic problem is to estimate P (c|w) for each target word and
P (x|c, w) for each class-word pair. Given N training samples {(xn, cn, wn)}N

n=1, the
unknown probabilities can be estimated using the conventional frequencies:

P (c|w) =
N(c, w)
N(w)

(7)
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P (xd|c, w) =
N(xd, c, w)

N(c, w)
(8)

where the N(·) are suitably defined event counts; i.e., the events are (c, w) pairs
in (7) and (xd, c, w) triplets in (8).

In practice, some features may have continuous rather than discrete domains. In
that case, the use of Eq. 8 requires the discretization of continuous features [15].

Unfortunately, these frequencies often underestimate the true probabilities in-
volving rare words and the incorrect class. To circumvent this problem, the model
is smoothed using the absolute discounting smoothing technique imported from sta-
tistical language modeling [20]. The idea is to discount a small constant b ∈ (0, 1)
to every positive count and then distribute the gained probability mass among the
null counts (unseen events). A detailed explanation of the smoothed model can be
found in [21, 15].

3.2.2 Confidence estimation using Bayes decision theory

Confidence estimation can be seen as the problem of classifying new words output
by the speech recognizer as either correct or incorrect, once the parameters of the
chosen model have been estimated during the training stage. This is a classical two-
category classification problem, with different costs associated to the two possible
classification errors [22]. In our case, the loss incurred when a correct word is
classified as incorrect (false rejection) will in general be lower than the loss incurred
when an incorrect word is classified as correct (false acceptance). For instance, a
false rejection could involve asking the user to repeat the utterance, while a false
acceptance could involve giving to the user a service or response he or she did not
ask for. According to [22, Secc. 2.3] minimum risk is incurred by deciding c = 1 if

(λ01 − λ11)P (c = 1 | x, w) > (λ10 − λ00)P (c = 0 | x, w) (9)

with λij being the loss incurred if we decide in favor of class i when the true
state of nature is j. Since P (c = 0 | x, w) = 1 − P (c = 1 | x, w), this is equivalent
to deciding c = 1 if

P (c = 1 | x, w) > τ =
λ10 − λ00

λ01 − λ11 + λ10 − λ00
. (10)

Thus, the optimal decision rule consists in classifying a word as incorrect if
P (c = 1 | x, w) is greater that a certain threshold τ that depends of the values λij.
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3.2.3 Experimental results

In evaluating confidence estimation performance, two measures are of interest: the
True Rejection Rate (TRR, the number of incorrect words that are classified as
incorrect divided by the number of incorrect words) and the False Rejection Rate
(FRR, the number of correct words that are classified as incorrect divided by the
number of correct words). The trade-off between TRR and FRR values depends
on a decision threshold τ (see section 3.2.2). A Receiver Operating Characteristic
(ROC) curve represents TRR against FRR for different values of τ . The area under
a ROC curve divided by the area of a worst-case diagonal ROC curve, provides an
adequate overall estimation of the classification accuracy. We denote this area ratio
as AROC. Note that an AROC value of 2.0 would indicate that all words can be
correctly classified. Another criterion is the Confidence Error Rate (CER) defined
as the number of classification errors divided by the total number of recognized
words. A baseline CER is obtained assuming that all recognized words are classified
as correct.

As predictor features we used a number of 20 features: 12 features are based
on word graphs and the other 8 were proposed by different authors [23, 16, 24]. A
detailed explanation of these features can be found in [15]. Table 3 shows the best
results using a subset of these features along with the naive bayes smoothed model
(eq. 5). Experiments were performed using the Eu-I (microphone) and the Eu-II
corpus summarized in table 1.

The use of pattern recognition techniques for confidence estimation in speech
recognition achieves high performance. The naive bayes model achieves significant
relative reduction in baseline CER: 27% for Eu-I and 37.8% for Eu-II. The AROC
values show also a high overall estimation of the classification accuracy.

Table 3: Best results for Eu-I and Eu-II corpus

Eu-I Eu-II
AROC 1.86 1.81

CER 3.30 13.06
Baseline CER 4.52 21.0
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3.3 Computer-Assisted Transcription of Speech

Complex tasks with large vocabularies, noisy environments, spontaneous speech,
etc. result in a significant number of errors in transcriptions. When high quality
transcriptions are needed, a human transcriptor is required to verify and correct the
(imperfect) system’s transcriptions.

This process is usually performed off-line. First, the system returns a full tran-
scription of the input audio signal. Next, the human transcriptor reads it sequen-
tially (while listening to the original audio signal) and corrects the possible mistakes
made by the system. This solution is rather uncomfortable and inefficient for the
human corrector.

An interactive on-line scenario can allow for a more efficient approach. Here, the
ASR and the human transcriptor cooperate to generate the final transcription of the
input signal. The rational behind this approximation is to combine the high quality
provided by the human transcriptor with the efficiency of the ASR. We denote this
approach as “Computer Assisted Transcription of Speech” (CATS) and it is based
on the interactive approach previously applied to Computer Assisted Translation
(CAT) [25, 26].

Experiments with the proposed CATS approach show that the interactive para-
digm not only is more comfortable for the human transcriptor but also reduces
the overall effort needed. In the next sections we show the application of pattern
recognition techniques to CATS.

3.3.1 Foundations of CATS

The process starts when the ASR system proposes a full transcription S (or a set of
best transcriptions) of a suitable segment of the acoustic signal Θ. Then, the human
transcriptor (named user from now on) reads this transcription until he or she finds
a mistake; i.e, he or she validates a prefix Sp of the transcription which is error-free.
Now, the user can enter a word (or words), C, to correct the erroneous text that
follows the validated prefix. This produces a new prefix P (the previously validated
prefix, Sp, followed by C). Then, the ASR system takes into account the new prefix
to suggest a suitable continuation (or a set of best possible continuations) to this
prefix (i.e., a new S), thereby starting a new cycle. This process is repeated until a
correct, full transcription of Θ is accepted by the user.

A key point on this interactive process is that, at each user-system iteration, the
system can take advantage of the prefix validated so far to attempt an improved
prediction for the continuation of this prefix.

The use of FSMs at all ASR levels allows to perform this process very efficiently.
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3.3.2 CAT based on Pattern Recognition Framework

In section 2, we show that speech recognition is stated as the problem of searching
for a sequence of words, W , that with maximum probability has produced a given
utterance, Θ. In the CATS framework, in addition to the given utterance Θ, a prefix
P of the transcription (validated and/or corrected by the user) is available and the
ASR should try to complete this prefix by searching in the integrated FSM for a
most likely suffix ŝ as:

ŝ = argmax
s

Pr(s | Θ, P )

= argmax
s

Pr(Θ | s, P ) · Pr(s | P ) (11)

Therefore, the search must be performed over all possible suffixes s of P and
the language model probability Pr(s | P ) must account for the words that can be
uttered after the prefix P .

In order to solve equation (11), the signal Θ can be considered split into two
fragments, Θb

1 and Θm
b+1, where m is the length of Θ. By further considering the

boundary point b as a hidden variable in (11), we can write:

ŝ = argmax
s

∑
0≤b≤m

Pr(Θ, b |s, P ) · Pr(s |P ) (12)

We can now make the naive (but realistic) assumption that Θb
1 do not depend

on the suffix, and Θm
b+1 do not depend on the prefix, and we can approximate the

sum by the dominating term to rewrite (12) as:

ŝ ≈ argmax
s

max
0≤b≤m

Pr(Θb
1 |P ) · Pr(Θm

b+1 |s) · Pr(s |P ) (13)

3.3.3 Experimental results

For the experimental study, two different corpora were used. The first one is the
Eu-I Corpus (described in table 1). The second is the Albayzin geographic corpus
[27], consisting of oral queries to a geographic database.

For evaluating the CAT performance, two measures were employed: on the one
hand, the Word Error Rate (WER) (described in section 3.1.1); and on the other
hand, the Word Stroke Ratio (WSR) [25], a measure borrowed from CAT was em-
ployed.

Table 4 presents the results obtained with both corpora. The difference between
the WER number and the WSR number indicates the reduction of effort achieved
by CATS with respect to the post-edition process in classic ASR.
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Table 4: Results obtained with the Eutrans and Albayzin corpora
Eutrans Albayzin

WER 11.4 11.6
WSR 9.3 10.1

% Improvement ≈ 19 ≈ 14

3.4 Dialogue systems

A dialogue system is defined as a computer application that allows a user to achieve
a certain objective or accomplish a defined task using dialogue. These systems are
really useful in many tasks where, currently, a human operator is needed to input
user queries to information systems and inform of the query results to the user.
The main objective is to achieve a computer system that can simulate the human
capabilities in terms of dialogue.

The application of Pattern Recognition methods and techniques to dialogue sys-
tems is not new. The first attempts in dialogue management using Finite-State
technologies were produced in the 90s. In these proposals, the dialogue space was
defined in terms of a FSM, where each state is associated to the state of the data
required by the dialogue system [28, 29]. The behavior of the system was based on
transiting from one state to another depending on the user input, and performing
a different action depending on the state the system was. The problem with this
approach was the combinatorial explosion of states even for a limited number of
data items [28].

A new step was taken to use probabilistic dialogue models, which define the
dialogue actions in terms of Dialogue Acts (DA) [30]. An DA defines which is the
intention and mission of the utterance at dialogue level (e.g., if it is a question, an
answer, what about it is, etc.). Thus, these models try to associate a sequence of DA
to a given user input, and try to define the actions to be taken by the system as a
sequence of new DA. The model features can be learn automatically from dialogues
annotated with the corresponding DA.

The initial works were directed to the labelling of dialogue turns from models
derived from a Maximum Likelihood approach. This approximation results in using
models like HMMs and n-grams [31, 32]. In this framework, it is supposed we
have available the sequence of words W that constitute the dialogue segment (a.k.a.
utterance) and the previous sequence of the l assigned DA D in the current dialogue.
Using this information, the DA to assign to the segment D∗ is defined by:
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D∗ = argmax
D′

Pr(D′|W ) Pr(D · D′) ≈ argmax
D′

Pr(D′|W ) Pr(D′|Dl
l−n)

Clearly, Pr(D′|W ) can be defined by a HMM and Pr(D′|Dl
l−n) is an n-gram

model, given a method very similar to isolated word recognition. Using this model,
high accuracy results (approximately 71%) are achieved for the SwitchBoard task [32].

Although these models are initially defined for text input, some works were done
to include other features, like prosody, which are exclusively from speech [32]. In
these works, the Pr(D′|W ) is substituted by the adequate distribution probability
that includes all the other acoustic features which are taken into account.

More recently, some work has been done in the initial direction of defining the
system behavior [33], based on the same type of models. In this case, apart from ex-
tending the assignation of DA to whole unsegmented user turns, the model presents
the reaction of the system in terms of DA sequences. Thus, the reaction of the
system corresponds to a (sequence of) DA D∗ which is given by:

D∗ = argmax
D

[
max

D
Pr(D|d′ss+2−m)

l∏
i=1

Pr(Di|D′i−1
i+1−n) Pr(Ωi|Di)

]

In this formula, it is assumed a certain segmentation of the user turn words Ω in l
segments (Ωi) for the sake of simplicity, but the real process performs simultaneously
both segmentation and assignation, in a very similar manner to continuous speech
recognition. The used models are again HMM for Pr(Ωi|Di), and n-gram models
for Pr(Di|D′i−1

i+1−n) and Pr(D|d′ss+2−m).
Many works have been developed in the line of mixing classical Pattern Recog-

nition and Reinforcement Learning techniques, using the framework of the Markov
Decission Processes (MDP). An MDP is defined as a tuple of states, actions, transi-
tions and a reward function, and the probabilistic distributions that drive its behav-
ior can be inferred with the classical Estimation-Maximisation algorithms [34, 35].
As an extension of MDP, Partially Observable MDP have been proposed recently
for dialogue management [36].

The application of Pattern Recognition based techniques on dialogue is not only
limited to dialogue management. One of the most important tasks in dialogue sys-
tems development is the annotation of the data used to infer the probabilistic models.
This annotation task is usually manual and very expensive. Therefore, applications
devoted exclusively to annotate dialogue corpora have been developed, some of them
using FSMs derived from Grammar Inference techniques [37]. The results achieved
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with these models for Basurde task (about 47% of the turns completely well labeled)
show that they are really appropriate to save time in the dialogue labelling task.

In the same line, other works were directed to the identification of the DA of
the turns using the combination of HMM and n-grams [32], or using the presence in
the turn of significant n-grams (cue-phrases) to determine the most likely DA [38].
All these approximations use classical statistical classification techniques, which are
frequent in Pattern Recognition.

3.5 Concluding remarks

In this paper we have shown the use of Pattern Recognition techniques for differ-
ent speech recognition applications. For speech recognition we have presented an
approach which use stochastic FSMs at all its levels: acoustic-phonetic, lexical and
syntactic/translation. Good recognition results were achieved for three tasks of dif-
ferent degree of difficulty. For confidence estimation, we have presented a sound
framework based on Bayes decision theory. We propose a smoothed naive bayes
model for estimating confidence measures. High performance has been achieved
using this model along with a set of well-known features. A new approach to the
production of perfect transcriptions of speech has been presented. This approach
combines the efficiency of an ASR system with the accuracy of a human transcrip-
tor. The results are very promising even with this initial approximation. Finally,
we have presented a brief review of the pattern recognition techniques applied to
dialogue systems.

References

[1] F. Jelinek. Statistical Methods for Speech Recognition. MIT Press, 1998.

[2] J.K. Baker. The dragon system - an overview. IEEE Trans. on Acoustics,
Speech and Signal Processing, 1(23):143–159, 1975.

[3] F. Jelinek. Continuous speech recognition by statistical methods. Proc. IEEE,
4(64):532–556, 1976.

[4] L.E. Baum. An inequality and associated maximization technique in statistical
estimation for probabilistic functions of markov processes. Inequalities, 3:1–8,
1972.

[5] P.A. Devijver. Baum’s forward-backward algorithm revisited. Pattern Recog-
nition Letters, 3:369–373, 1985.

36 Pattern Recognition : Progress, Directions and Applications



[6] H. Ney, U. Essen, and R. Knesser. On structuring probabilistic dependences in
stochastic language modelling. Computer, Speech and Language, 8:1–38, 1994.

[7] A. Viterbi. Error bounds for convolutional codes and an asymtotically optimal
decoding algorithm. IEEE Transactions on Information Theory, 13:260–269,
1967.

[8] G.D. Forney. The viterbi algorithm. In Proceedings of the IEEE, volume 61(3),
pages 268–278, 1973.

[9] D. Llorens, F. Casacuberta, E. Segarra, J.A. Sánchez, and P. Aibar. Acousti-
cal and syntactical modeling in atros system. In International Conference on
Acoustic, Speech and Signal Processing, volume 2, pages 641–644. IEEE Press,
March 1999.

[10] F. Casacuberta, D. Llorens, C. Mart́ınez, S. Molau, F. Nevado, H. Ney, M. Pas-
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Abstract

Previous work done in genre recognition and characterization from sym-
bolic sources (monophonic melodies extracted from MIDI files) have pointed
our research to the use of classifier ensembles to better accomplish the task.
This work presents current research in the use of voting ensembles of classifiers
trained on statistical description models of melodies, in order to improve both
the accuracy and robustness of single classifier systems in the genre recognition
task. Different voting schemes are discussed and compared, and results for a
corpus of Jazz and Classical music pieces are presented and assesed.

Keywords : Statistical pattern recognition, Classifier ensembles, Music infor-
mation retrieval, Musical genre recognition

1 Introduction

Some recent works explore the capabilities of machine learning or pattern recognition
methods to recognise music genre, either using audio [1, 2, 3], or symbolic [3, 4, 5]
sources, or even metadata [6]. After a period of time doing research on the use of
statistical models and classification paradigms for music genre (or style) character-
ization from symbolic data [7, 8], we reached a point where the combination of the
different learning systems we developed showed up as the logical next step in our
research. The many ways of building classifier ensembles (i.e., combining different
classifiers) to improve both the accuracy and robustness of single classifiers is a hot
topic in the areas of machine learning or pattern recognition. Works on this subject
point out the importance of the concept of diversity in classifier ensembles, with
respect to both classifier outputs and structure [9, 10, 11].

Our current research on combination of several previously developed classifica-
tion systems for genre recognition in the symbolic domain is presented in this paper.

∗This work was supported by the projects Spanish CICyT TIC2003–08496–C04, partially sup-
ported by EU ERDF, and Generalitat Valenciana GV043–541.
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MIDI files have been used as the primary source of music data so, first, the music
corpus of such files used is described. Second, the statistical description models
utilized to describe music content are presented. Next, the classification techniques
based on them are described, along with the different ensemble schemes for combin-
ing classifier decisions. Following this, the results for the ensembles are presented
and compared with individual classifier results for genre recognition. Finally, the
conclusions drawn from the results are discussed, pointing the research to further
work lines.

2 Music data

The music corpus used is a set of MIDI files from Jazz and Classical music with a
monophonic melody track, collected from different sources. No preprocessing of these
files was done before entering the system, except for manually checking the presence
and correctness of key, tempo, and meter meta-events, as well as the labeling of the
melody track.

The corpus is made up of 110 files. 45 files are classical music files and 65 are
jazz files, with a total length around 10,000 bars (more than six hours of music).
The classification systems presented here work only on the information contained
in the melody track. The rest of the MIDI file content is ignored because one of
the general aims of this work is to analyze how much of the genre information is
contained in the melody alone.

Two different ways of describing the content of the melody track have been used.
The first one is based on melodic, harmonic, and rhythmic statistical descriptors and
the second one describes melodic content in terms of strings of symbols corresponding
to melody subsequences. Both description methods are briefly described in the
following sections.

3 Statistical description models

3.1 Shallow structure descriptors

The first group of description models that have been used are based on descriptive
statistics that summarise the content of a melody in terms of pitches, note durations,
silences, harmonicity, rhythm, etc. This kind of statistical description of musical
content is sometimes referred to as shallow structure description [12].

In these models, each melody is described by a vector of statistical descriptors,
labeled with the genre of the melody. A set of 28 descriptors has been defined,
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based on several categories of features that assess melodic, harmonic, and rhythmic
properties of a melody. These descriptors are summarized in Table 3.1. The first
column indicates the musical property analysed and the other columns indicate the
kind of statistics describing the property. A blank entry in the table means that a
particular statistic has not been computed.

Four different description models have been defined. The model containing all
the descriptors is called the F (full) model. From this one, three reduced models have
been derived. This has been achieved using a per-feature separability test described
in [13] to rank the features. Subsets of features are incrementally built by choosing
the best ranked features. These models are called here A, B, and C for simplicity.
Model A includes the six best ranked features, model B adds four features to model
A, and model C adds two features to model B, so that A ⊂ B ⊂ C ⊂ F . Each entry
in Table 3.1 indicates the smallest feature subset where the particular statistical
descriptor has been included.

Category Counter Range Avg. (relative) Dev. Normality

Notes A
Significant silences B

Non significant silences F
Pitches A A A F

Note durations F F C F
Silence durations F F F F

Inter-onset intervals F F B F
Pitch intervals A F B B

Non-diatonic notes F F C F
Syncopations A

Table 1: Shallow structure descriptors

For the descriptor computations, the melodies are quantized to a resolution of
Q = 48 ticks per bar. Durations are measured in ticks. For pitch and interval cate-
gories, the range descriptors are computed as the maximum minus the minimum
value in the melody, and the average-relative descriptors are computed as the av-
erage value minus the minimum value. For durations (note and silence durations,
and inter-onset intervals) the range descriptors are computed as the ratio between
the maximum and the minimum values, and the average-relative descriptors are
computed as the ratio between the average and the minimum value. Finally, nor-
mality descriptors are computed using the D’Agostino statistic [14] for assessing the
normality of the distribution of each property.
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3.2 n-word based descriptors

The n-word based models make use of text categorization methods to describe
melodic content. The technique encodes note sequences as character strings, there-
fore converting a melody in a text to be categorized. Such a sequence of n consecutive
notes is called an n-word. All possible n-words in a melody are extracted, except
those containing a silence lasting four or more beats. The encoding for n-words
used in this work has been derived from the method proposed in [15]. This method
generates n-words by encoding pitch interval and duration information. For each
n-note sequence, all pitch intervals and duration ratios (inter-onset interval ratio)
are calculated using Eqs. (1) and (2) respectively:

Ii = Pitchi+1 − Pitchi (i = 1, . . . , n − 1) (1)

Ri =
Onseti+2 − Onseti+1

Onseti+1 − Onseti
(i = 1, . . . , n − 2) (2)

and each n-word is defined as a string of symbols:

[ I1 R1 . . . In−2 Rn−2 In−1 Rn−1 ] (3)

where the pitch intervals and duration ratios have been mapped into alphanumeric
characters (see [8, 15] for details).

This method represents a musical piece as a vector xi =
(
xi1, xi2, . . . , xi|V|

)
,

where each component represents the presence of the word wt in the melody, being
|V| the size of the vocabulary, that is, the total number of different n-words extracted
from the corpus.

A common practice in text classification is to reduce the dimensionality of those
vectors (usually very high) by selecting the words that contribute most to discrim-
inate the class of a document (a melody here). The average mutual information
measure (AMI) [16] has been used in this work to rank the words. This measure
gives a high value to those words that appear often in melodies of one genre and
are seldom found in melodies of the other genres. The n-words are sorted using this
value, so only information about the first |V| words are provided to the classifier.

4 Classification techniques

4.1 Classifiers for shallow statistical features

Two different classification paradigms have been used with the four description mod-
els presented in section 3.1: the k-nearest-neighbour classifier, and the bayesian
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classifier assuming non-diagonal covariance matrices [17]. For the first one, given a
sample xi, the distances to the prototypes in the training set are computed, and the
class labels of the closest k are taken into account to take the decision by a majority.
A value k = 7 has been establish for this classifier after some trials.

In the bayesian classifier the classification is performed following the well-known
Bayes’ classification rule. In a context where there is a set of classes cj ∈ C ={
c1, c2, . . . , c|C|

}
, a sample xi is assigned to class cj with maximum a posteriori

probability, in order to minimize the probability of error:

P (cj |xi) =
P (cj)P (xi|cj)

P (xi)
. (4)

Using these two different classification techniques, eight different classifiers have
been defined using the four shallow structure description models presented in sec-
tion 3.1. Each classifier has been trained separately on the musical corpus and its
accuracy estimated through leave-one-out cross-validation.

4.2 Naive Bayes classifier for n-words

For n-word based melody categorization, the naive Bayes classifier, as described in
[18], has been used. Here, the classifier is based on the same Eq. 4, but applying
the naive Bayes assumption, i.e. it is assumed that all words in a melody sample
are independent of each other, and also independent of the order they were gener-
ated. This assumption is clearly false in our problem and also in the case of text
classification, but naive Bayes can obtain near optimal classification errors in spite
of that [19].

In this work, classes are musical genres, and the class-conditional probability of a
melody P (xi|cj) is given by the probability distribution of note sequences (n-words)
in genre cj , which can be learned from a labeled training set, X = {x1,x2, . . . ,xN}.
Two different distribution models have been used for the class-conditional proba-
bility: a Multivariate Bernoulli (MB) model, where the components of a sample
vector are xit ∈ {0, 1} and a Multinomial (MN) model, where components are
xit ∈ {0, 1, ..., |xi|}, being |xi| the number of n-words extracted from melody xi.
Both MB and MN distributions have proven to achieve quite good results in text
classification [18] and are briefly described below.

In the MB model, each class follows a multivariate Bernoulli distribution where
the parameters to be learned from the training set are the class-conditional proba-
bility of each word in the vocabulary.

The MN model takes into account word frequencies in each melody, rather than
just the occurrence or non-occurence of words, as in the MB model. In consequence,
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each component xit is the number of occurrences of word wt in the melody. In
this model, the probability that a melody has been generated from a genre cj is a
multivariate multinomial distribution, where the melody length is assumed to be
class-independent [18].

4.3 Classifier ensembles

After analysing the performance of the different classifiers studied, we have found a
diversity of errors among the decisions taken by the different classifiers. This diver-
sity has been suggested by some authors [10, 20] as an argument for using classifier
ensembles with good results. These ensembles could be regarded as committees of
‘experts’ [21] in which the decisions of individual classifiers are considered as opin-
ions supported by a measure of confidence usually related to the accuracy of each
classifier. The final classification decision is taken either by majority vote or by a
weighing system.

4.3.1 Voting schemes.

Designing a suitable method of decision combination is a key point for the ensemble’s
performance. In this paper, different possibilities that are presented below have been
explored and compared. In the discussion that follows, N stands for the number of
samples contained in the training set X = {x}N

i=1, M is the number of classes in a
set C = {cj}

M
j=1, and K classifiers, Ck, are utilized.

ek ek ek

ak ak ak

0 N(1−1/M)

1 1 1

eWeB eWeB

0

Figure 1: Different models for giving the authority (ak) to each classifier in the
ensemble as a function of the number of errors (ek) made on the training set.

1. Majority vote. This is the simplest method. It just counts the number of
decisions for each class and assigns the sample xi to the class cj that obtained the
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highest number of votes. The snag here is that all the classifiers have the same
‘authority’ regardless of their respective abilities to classify properly. In terms of
weights it can be considered that wk = 1/K ∀k.

2. Simple weighted majority. The decision of each classifier, Ck, is weighed
according to its estimated accuracy (the ratio of successful classifications, αk) on the
training set [22]. This way, the authority for Ck is just ak = αk. Then, its weight
wk is:

wk =
ak∑
l al

. (5)

Also for the rest of weighting schemes presented here, the weights are the nor-
malized values for ak, as shown in this equation.

The weak point of this scheme is that an accuracy of 0.5 in a two-class problem
still has a fair weight although the classifier is actually unable to predict anything
useful. This scheme has been used in other works [23] where the number of classes
is rather high. In those conditions this drawback may not be evident.

3. Re-scaled weighted majority. The idea is to assign a cero weight to clas-
sifiers that only give N/M or less correct decisions on the training set, and scale
the weight values proportionally, assigning ak = 1 to the perfect classifier. As a
consequence, classifiers with an estimated accuracy αk ≤ 1/M are actually removed
from the ensemble. The values for the authority are computed according to the line
displayed in figure 1-left. Thus, if ek is the number of errors made by Ck, then

ak = max{0, 1 −
M · ek

N · (M − 1)
} .

4. Best-worst weighted majority. In this ensemble, the best and the worst
classifiers in the ensemble are identified using their estimated accuracy. A maximum
authority, ak = 1, is assigned to the former and a null one, ak = 0, to the latter,
being equivalent to remove this classifier from the ensemble. The rest of classifiers
are rated linearly between these extremes (see figure 1-center). The values for ak

are calculated as follows:
ak = 1 −

ek − eB

eW − eB

,

where eB = mink{ek} and eW = maxk{ek} .
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5. Quadratic best-worst weighted majority. In order to give more authority
to the opinions given by the most accurate classifiers, the values obtained by the
former approach are squared (see figure 1-right). This way,

ak = (
eW − ek

eW − eB

)2 .

4.3.2 Classification.

Once the weights for each classifier have been computed, the class receiving the
highest score in the votation is the final class prediction. If ĉk(xi) is the prediction
of Ck for the sample xi, then the prediction of the ensemble can be computed as

ĉ(xi) = arg max
cj∈C

∑
k

wkδ(ĉk(xi), cj) , (6)

being δ(a, b) = 1 if a = b and 0 otherwise.
Since the weights represent the normalized authority of each classifier, it follows

that
∑M

k=1 wk = 1. This makes possible to interpret the sum in Eq. 6 as P (cj |xi),
the probability that xi is classified into cj , and ĉ(xi) as the class for which this
probability is maximum.

5 Results

The classifiers described in sections 4.1 and 4.2 have been utilized in order to
build the ensembles, combining the different description models and classification
paradigms: four k-nearest neighbors, using k = 7, with the different feature com-
binations (A, B, C, and F models), four Bayesian classifiers with the same feature
combinations, and two naive Bayes using Bernoulli and Multinomial probability dis-
tributions. For the latter, a vocabulary size of 100 and 170 2-words have been used
respectively, according to their AMI values. This makes a total of ten classifiers
for building ensembles. Table 5 presents the estimated accuracy of the individual
classifiers, αk, obtained using a leave-one-out validation method on the training set.

Five different ensembles have been constructed using the five different votation
methods described above (represented here as V1, V2, V3, V4, and V5). The de-
cisions of the ensembles are summarised in Table 5 (# errors all column), and
graphically depicted in Fig. 2 against the best individual classifier score. Note that
the ensemble’s performance using the quadratic best-worst strategy improves the
behaviour of the best of the individual classifiers: just two errors against the three
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Classification paradigm Statistical model Feature selection # errors αk

7-nearest neighbours Shallow A 7 0.936
Shallow B 12 0.891
Shallow C 12 0.891
Shallow F 3 0.973

Bayes Shallow A 10 0.909
Shallow B 9 0.918
Shallow C 10 0.909
Shallow F 22 0.746

Naive Bayes Bernoulli |V| = 100 8 0.923
Multinomial |V| = 170 16 0.855

Table 2: Working parameters and accuracy of the different classifiers selected.

Voting method # errors all % # errors all-but-best %
V1 6 94.5 5 95.5
V2 9 91.8 9 91.8
V3 5 95.5 8 89.1
V4 3 97.3 4 96.4
V5 2 98.2 4 96.4

Table 3: Ensemble’s performance.

errors made by 7-nearest neighbour classifier based on the whole set of shallow de-
scriptors. Also it is interesting to see that majority voting and simple or re-scaled
weighted majority perform clearly worse than the best-worst scale-based schemes.

The question arises of how sensitive is this success to the construction of the
ensemble. In addition, is it worth to build an ensemble for avoiding just one error?
The answer for both questions could be approached removing from the ensemble the
best of the classifiers and analysing how much the performance is degraded. Thus,
the 7-nearest neighbour classifier trained with the F model was dropped from the
ensemble, and the new results were those also shown in Table 5 (# errors all-but-best
column).

Note how, although the results are not as good as earlier, some ensembles man-
tain a high standard of precision, with just 4 errors. This clearly improves the
performance of the current best classifier (7 errors), so the ensemble seems quite
robust and performs well, specially with the best-worst strategies introduced here.
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Figure 2: Number of errors made by the different ensembles (voting schemes from 1
to 5, and the performance of the best classifier on the left). Bars in black correspond
to the ensemble of all the classifiers and grey bars to the ensemble of all but the
best.

6 Conclusions

We have shown the performance of classifier ensembles for classifying a symbolically
represented melody into a given music genre, using statistical description models.
In previous works we have shown the feasibility of using these kind of data and
representations to approach the problem, but by constructing an ensemble using
different classifiers, their votes are “averaged” and this reduces the risk of choosing
the wrong classifier.

Among all the voting schemes tested, the approaches based on scaling the weights
to a range established by the best and worst classifiers have shown the best classifi-
cation accuracy, which is slightly better than the most accurate individual classifier
utilized. Evidence of the robustness of these best-worst scale based ensembles has
also been shown. After removing the best classifier from the ensembles, they still
managed to perform fairly better than any of the remaining individual classifiers.

Further work is needed to test the robustness of this scheme to other music
genres, using different classification paradigms, and combination techniques, perhaps
taking advantage of the capability of the combination schemes presented here to

50 Pattern Recognition : Progress, Directions and Applications



ouput membership probabilities for each genre, given a sample melody, as stated in
section 4.3.2.
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Abstract

In this paper a new algorithm to describe a binary image as an ordered
vector set is presented. An extension of the string edit distance is defined for
computing it between a pair of ordered sets of vectors. This edit distance can
be used in nearest neighbor classification tasks. The advantages of this method
applied to isolated handwritten character classification are shown, compared to
similar methods based in string or tree representations of the binary image.

1 Introduction

The description of an object contour in a binary image as a string [1] using Freeman
code [2] or using a tree representation structure [3, 1] is widely used in pattern
recognition. For using these structures in a recognition task, the edit distance is
often used as a measure of the differences between two prototypes. Both, string edit
distances [4] and tree edit distance [5] are used, depending on the data structures
utilized for representing the problem data. In this paper, to obtain a representation
of the object contour from a binary image, an ordered vector set is extracted, and
an edit distance measure is defined between pairs of instances of this representation.
This distance is an extension of the string edit distance, adding two new rules and
changing vectors by symbols. The goal is to reduce the features that represent a
binary image in order to compute the distance faster, keeping the final classification
time low and good error rates.

2 Feature extraction from a binary image

The goal of this representation is to describe the contour of an object using the least
possible number of elements. The classical representation of a contour in a binary
image links the pixels with their neighbors using 0 to 7 (see Fig. 1) codes which

∗Work partially supported by the Spanish CICYT under contract TIC2003-08496-CO4
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Figure 1: Freeman 2D code

represent a discrete number of 2D directions. This way, a chain that represents the
contour is obtained (Fig. 2 top-left).

This kind of feature extraction assumes that all linked pixels are of equal impor-
tance. If we select the most representative points of the contour and link all these
ppints, a compact representation of 2D figures is obtained, with less features than
using Freeman codes.

The idea is to select a set of dominant points in a contour [6, 7], link those
dominant points following the contour of the figure using 2D vectors, and then use
these ordered vector set to represent the image (Fig. 2 bottom-right).

In a particular application of handwritten character recognition, it is recom-
mended to apply some filter operations to original image before extracting and
coding the contours [8] including an opening filter [9] and a thinning algorithm [10]
in order to remove noise and redundant information.

3 Ordered vector set edit distance

The string edit distance definition [4] is based on three edit operations: insertion,
deletion, and substitution. Let Σ the alphabet, A,B ∈ Σ∗ a finite string of characters
and Λ is a null character. A 〈i〉 is the ith character of the string A; A 〈i : j〉 is the
substring form the ith to jth characters of A, both inclusive.

An edit operation is a pair a, b ∈ Σ ∪ {Λ} : (a, b) �= (Λ,Λ). So, the basic edit
operations are substitution a → b, insertion Λ → b and deletion a → Λ. If a generic
cost function is associated to each operation γs (a → b), the cost of the sequence of
edit operations that transforms a finite string A in B is defined as

ds (A,B) = min

⎧⎪⎪⎨
⎪⎪⎩

γs (Λ → B 〈1〉) + ds (A,B 〈2 : |B|〉) |B| > 1
γs (A 〈1〉 → Λ) + ds (A 〈2 : |A|〉 , B) |A| > 1

γs (A 〈1〉 → B 〈1〉) + ds (A 〈2 : |A|〉 , B 〈2 : |B|〉) |A| > 1 ∧ |B| > 1
0 |A| = 0 ∧ |B| = 0
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Figure 2: General scheme. From the binary image, morphological filters are applied
to correct gaps and both contour and skeleton are obtained. From the first, the chain
code is obtained and from the second, the ordered vector set is extracted using a
dominant point selection algorithm.
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The similar idea of an ordered string is extended to an ordered vector set. Let
V,W ∈ (R×[0, 2π])∗ a finite set of vectors and Λ is a null vector. V 〈i〉 is the vector
ith in the set V , VN 〈i〉 is the norm and Vα 〈i〉 is the angle of ith vector; V 〈i : j〉 is
the subset form ith to jth component vectors of V , both included.

Now, an edit operation is a pair (v,w) ∈ (R×[0, 2π]) , (v,w) �= (Λ,Λ) : (v,w∗) ∪
(v∗, w). So, the basic edit operations are substitution (1 to 1) v → w, substitution
(1 to N) called fragmentation v → w+, substitution (N to 1) called consolidation
v+ → w, insertion Λ → w and deletion v → Λ. In this case we considered the case
that one vector could be replaced by N , or vice versa.

When using dominant points, it is usual that a small change in the contour
generates a new dominant point, so when comparing two prototypes 1 vector in the
first prototype can be similar to N continuous vectors from the second prototype.

The cost of sequence of edit operations that transforms a finite string V into W ,
if we associate a cost function γv (v∗, w∗), is defined as

dv (V,W ) = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γv (Λ → W 〈1〉) + dv (V,W 〈2 : |W |〉) |W | > 1
γv (V 〈1〉 → Λ) + dv (V 〈2 : |V |〉 ,W ) |V | > 1

γv (V 〈1〉 → W 〈1〉) + dv (V 〈2 : |A|〉 ,W 〈2 : |B|〉) |V | > 1 ∧ |W | > 1
γv (V 〈1〉 → W 〈1 : j〉) + dv (V 〈2 : |V |〉 , B 〈j + 1 : |W |〉)
j∈[2,|W |] |W | > 2

γv (V 〈1 : i〉 → W 〈1〉) + dv (V 〈j + 1 : |V |〉 , B 〈2 : |W |〉)
i∈[2,|V |] |V | > 2

0 |V | = 0 ∧ |W | = 0

The algorithm proposed in [4] for computing the string edit distance can be
extended to compute the ordered vector set edit distance in the following way:

1. Function vectorEditDistance(V ,W)

2. D[0, 0] := 0;

3. for i := 1 to |V | do D[i, 0] := D[i − 1, 0] + γv (V 〈i〉 → Λ);

4. for j := 1 to |W | do D[0, j] := D[0, j − 1] + γv (Λ → W 〈j〉);

5. for i := 1 to |V | do

6. for j := 1 to |W | do

7. m1 := D[i − 1, j − 1] + γv (V 〈i〉 → W 〈j〉);

8. m2 := D[i − 1, j] + γv (V 〈i〉 → Λ);
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9. m3 := D[i, j − 1] + γv (Λ → W 〈j〉);

10. m := ∞;

11. for k := 1 to |V | do

12. if (i − k) ≥ 0 then m := min {m, D[i − k, j − 1] + γv (V 〈i − k : i〉 → W 〈j〉)};

13. endfor

14. for k := 1 to |W | do

15. if (j − k) ≥ 0 then m := min {m, D[i − 1, j − k] + γv (V 〈i〉 → W 〈j − k : j〉)};

16. endfor

17. D[i, j] := min(m,m1,m2,m3);

18. endfor

19. endfor

20. return D[i, j]

The complexity of the string edit distance algorithm is proportional to the length
of both strings, O(|A| |B|). In the case of the vectorEditDistance, it has a three
nested loops and the complexity is O(|V | |W |max {|V | |W |}), but if we considered
that a vector could be replaced by a fixed constant number of vectors, the new
complexity is O(|V | |W |). Thus, the cost is similar to string edit distance.

To compute the difference between one vector and a set of N vectors, used in
vectorEditDistance, the following function is utilized:

1. Function γv (V 〈k〉 → W 〈i : j〉)

2. float auxN := 0, aunAng := 0, r := 0, rSubs := 0, rLeft := 0

3. auxN := VN 〈k〉 //Norm single vector

4. auxAng := Vα 〈k〉 //Angle single vector

5. for l := i to j do

6. if auxN ≥ 0 then //Left norm single vector

7. rSubs := rSubs + auxN ∗ closest(auxAng,Wα 〈l〉)
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8. auxAng := Wα 〈l〉

9. endif

10. auxN := auxN − WN 〈l〉

11. endfor

12. if auxN ≥ 0 then //Left norm single vector

13. rLeft := auxN ∗ kInsertion

14. else //Norms W vectors > V

15. rLeft := −auxN ∗ kDeletion

16. endif

17. return rSubs + rLeft

where closest(angle1, angle2) returns the smallest angle between both parameters,
resulting a value in [0, π]. The kInsertion = kDeletion =π/2 is the maximum possible
difference between two angles.

The functions γv (V 〈i.j〉 → W 〈k〉) and γv (V 〈i〉 → W 〈j〉) are similar. In the
first case, the parameters change the order and in the second case, both parameters
are unitary vectors.

The insertion and deletion functions are defined as γv (Λ → W 〈j〉) = |W 〈j〉| ∗
kInsertion and γv (V 〈i〉 → Λ) = |V 〈j〉| ∗ kDeletion.

4 Experiments

Three algorithms have been compared based in different contour descriptions:

1. Classical Freeman chain code extracted from the object contour in the binary
image.

2. The ordered vector set extracted from the dominant points described in [7],
that will be referred as non collinear dominant points (NCDP).

3. The new structure based in the ordered vector set extracted from dominant
points described in [6]. In this article, 1 − curvature and k − curvature algo-
rithms are defined. The authors showed that the obtained dominant points
were similar for both methods, so we utilized the faster one: 1 − curvature.

Pattern Recognition : Progress, Directions and Applications 59



In the preliminary trials tested, the algorithm 1− curvature obtained lower error
rates than NCDP. Thus, the k parameter in the vectorEditDistance function was
tuned when applied to 1 − curvature. The k parameter is the maximum number of
continuous vectors that was set to 1.
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Figure 3: Results for NN classification of character obtained with ordered vector
set (1 − curvature), different training set (200 examples per class) and test set (50
samples per class and 26 character classes) as a function of different number of
vectors that can be replaced in a substitution operation in a vector edit distance:
(a) average error rate ± standard deviation; (b) average classification time.

A classification task using the NIST SPECIAL DATABASE 3 of the National
Institute of Standards and Technology was performed using the different contour
descriptions enumerated above to represent the characters. Only the 26 uppercase
handwritten characters were used. The increasing-size training samples for the ex-
periments were built by taking 500 writers and selecting the samples randomly. The
nearest neighbor (NN) technique was used to perform classification.

Figure 3 shows the comparison between the error rate in the vector classification
task evaluated for different sizes, k (vectorEditDistance). This experiment shows
that the error rate decreases linearly when the k grows to a limit while increasing
the number of computations increases the time of the classification. In this case, we
choice the lowest error rate with the lowest k, so the optimal parameter value was
k = 3.

The figure 4 shows the classification error rate and the time used in the classifi-
cation of 50 examples per class as a function of different training set.

In all cases the use of Freeman chain codes generates a lower error rate (less than
9%) in recognition than using ordered vector sets, although the classification time
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Figure 4: Results for NN classification of characters obtained with different contour
representations as a function of different training example sizes: (a) average error
rate ± standard deviation; (b) average classification time.

is much higher. Thus, the ordered vector set description based on dominant points
1− curvature [6] is a good trade-off choice. It obtains also a low error rate (less than
11%) and it is 10 times faster than using the Freeman chain codes.

5 Conclusions and future work

The ordered vector set that represents the contour of an object in a binary image
(based in dominant points computing using 1-curvature is one order of magnitude
faster than using Freeman chain codes, and it has just a slightly higher error rate.
The edit distance defined in this paper to compare ordered vector sets has a similar
complexity than string edit distance. Since the size of ordered vector set is significa-
tively lower than that of strings for representing the same object, the time needed
for computing the distance needed for classification is much lower.

As it can be seen in the results section the error rate using ordered vector set
based based on dominant points is similar to that of using the Freeman chain code.

As future work we planned to use some especial labels in each vector to describe
the curved shape of the original image to obtain a better description of the binary
image contour and decrease the error rate in this classification task.

Pattern Recognition : Progress, Directions and Applications 61



References
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Abstract

Biometric automatic identification has become an important issue in our
days, because there are a large number of systems that need it in a networked
society. Biometrics takes advantage of a number of unique, reliable a stable
personal physiological features, to offer an effective approach to identify sub-
jects. These features can be: iris, fingerprints, palmprints, hand geometry,
face, voice, retina, hand veined pattern, etc. However, for different reasons,
only some of them can be used in real systems. In this work we present the cur-
rent main research areas on biometric identification of the Instituto Tecnológico
de Informática. More particularly we present the biometric identification by:
fingerprints, voice, face, palmprint and fusion methods.

Keywords: biometrics, identification, security, control access, physiological fea-
tures, behavioural features.

1 Introduction

Biometric identification methods [11, 12, 2] are those that allow us to recognise a
subject using physiological or behavioural features. Although the methods need that
the subject must be present in the identification place, the subject collaboration is
not needed in some cases and even the subject could be unaware of the system
existence.

On the one hand, the physiological methods (figure 1) are based on the recog-
nition of different physiological features: fingerprints, iris, retina, hand geometry,
palmprint, face, DNA, hand veins pattern, face heat distribution, etc. On the other
hand the behaviour based methods are be based on the recognition of behavioural

∗Work supported by the “Agencia Valenciana de Ciencia y Tecnoloǵıa (AVCiT)” under grant
GRUPOS03/031 and the Spanish Project DPI2004-08279-C02-02
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features: speaker identification, hand write identification, typewriter analysis, step
analysis, etc.

Figure 1: Biometric identification methods.

There are two main applications of a biometric identification system: verification
and identification. In the first case, the subject is identified by a non-biometric
method, for instance a pin code or an identification card, and the system has to verify
if the given identity is correct. In the second case, the goal is to find the subject
identity among a set of possible identities included in a database with biometric
patterns.

For instance, typical verification applications are: building access control, com-
puter system access control, identity control, identification in voting, use of services
(cash dispenser, public carrying, etc), services payment (e-commerce), forensic iden-
tification (corpse, fatherhood, etc). A number of identification application can also
be named: forensic fingerprint identification, detection of subject included in “watch
lists” subject detection in public places (terrorism, crime, etc), frontiers control, etc

In systems based on pin or password identification the system performance is
based on the confidentiality of the pin or password and, if a key or identification
card are used, in avoiding its lost or stole. In all cases the key or code introduction
provides a successful access to the system. However, in biometric system, due to
the variability of the processed information it can result in a false rejection of an
authorised subject or a false acceptance of an unauthorised subject.

In practise, an intermediate solution between user comfort (each false rejects is

64 Pattern Recognition : Progress, Directions and Applications



followed by a new access try or an unnecessary alarm) and system security is sug-
gested. The False Accept Rate (FAR) is the probability of access of an unauthorised
subject and the False Reject Rate (FRR) indicates how often authorised subjects are
rejected and they must repeat the identification process. FAR must be fairly small,
in a range from 0.0001% to 0.1%. For instance, in USA nuclear plants, hand geom-
etry readers with a FAR of 0.1% are used. Must be considered that the real FAR
is obtained by the multiplication of the FAR by the probability for an unauthorised
subject to access to the identification device and try the access. If the biometric
system is joined with a classical access method, for instance magnetic card or pin,
the intruder must also have the card, a copy of it or must know the pin. The FRR
should also be small to avoid the authorised users’ disappointment. For instance, in
a device with 1000 access per day and a FRR of 1% there are 10 incidences per day.

The validation of manufacturer’s rates is no easy to check due to the small
percentages used. A test of thousands of supervised accesses are needed to obtain
significant results from a statistical point of view.

Next we present in detail the most used biometric features and their main ad-
vantages and drawbacks.

2 Fingerprints

Fingerprint identification [8] (figure 2) is the oldest [1] of the useful biometric meth-
ods and it is widely used. The fingerprint is obtained by finger ink-impression on
paper or in other material because of the flows perspired by the skin, or by the finger
exploration using a electronic device. The goal is to obtain the crests distribution
presented in fingertips.

Figure 2: Fingerprints

These crests make a complex pattern that is considered unique for each subject.
In twins, patterns are similar but not equal. There is scientific evidence of the
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low probability of that two fingerprint from two different finger could be equals by
random.

Traditionally, obtained features from fingerprints have been: type and minutiaes.
On the one hand, fingerprints can be classified in different type and subtype using
different methods and taxonomies resulting an easier fingerprints search. On the
other hand the minutiaes are crests bifurcations and endings whose relative positions
can identify the fingerprints, join with the center position and structures called
deltas. In a typical fingerprint we can find between 50 and 100 minutiaes.

In order to obtain these minutiae, a fingerprint preprocessing is done (figure 3).
The preprocessing step filters the original image and binarises and slims the crests
avoiding as possible the influence of spots, small scares and wastes that can be
present in the acquisition moment.

Figure 3: Fingerprints preprocessing

Besides minutiaes comparison, there are other automatic comparison methods
between fingerprints. Those methods use the correlation of crest images previously
preprocessed or their directions detected by filters. The methods could achieve a
good performance. However, they have problems due to the elastic deformation of
a given finger. This problem causes that the methods are not efficient for searching
in great finger sets.

The main advantages of fingerprints identification are:

• High universality. Any finger or hand absence is not usual.

• High permanence. Is known that finger lines do not change along subjects life.

• High oneness. Is very unprobable that the fingerprint of two different finger
were identical.

• Good performance. There are efficient algorithms for matching fingerprints.
The minutiaes basic information can be saved in a small storage space.
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• High acceptability. This identification method is used since many years ago, so
subjects see it as an usual method. However, in some cases is can be associated
with criminality and private invasion.

Its main drawbacks are:

• Simplicity of measurement. Even though electronic scanners have become very
cheap and have an easy installation and support, a good sample acquisition is
always determined by dirty, scars, injuries, etc. A great number of subjects
don’t known how to place correctly the finger in the scanner.

• Although the method has a good acceptability, some subjects don’t like to
touch a sensor touched by many people.

3 Speaker identification

Speak [10] (figure 4) is one of the features we use to identify subjects and, in daily
life, allow us to easily identify them. It is a natural way of interaction with the
environment and so pronounce words or phrases to a microphone for identifying is
very acceptable for users.

Figure 4: Speaker identification

The specific features of each subject’s speak are due to differences in physiological
and behaviour features of the speak system. The shape of vocal tract (larynx,
pharynx, oral cavity, nasal cavity, etc) has the main roll because modifies severely
the spectrum of the generated wave.
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The great variation of the voice of a given subject along relatively short periods
of time, and the moderate specificity of obtained features, make that speaker recog-
nition methods are often used joined with other identification method, as intelligent
card, pin, etc

The more significant advantages of speaker recognition are:

• Easy measurement: the price of the needed hardware (microphones) is small
and the acquisition is very simple and comfortable for users.

• High universality: the are very few persons with voice diseases.

• Good performance: nowadays, the verification is possible with normal com-
puting resources and the research is also possible for saved sets with a small
or medium storage size. The size of saving data can be easily stored in today
systems.

• High acceptability: most users do not worry for saying a word or phrase to get
access to buildings or services.

Its main disadvantages are:

• Low permanence: basic voice parameters can be modified easily due to a great
number of factors in short time intervals.

• Low oneness: the ability to distinguish two subjects is only medium even for
humans, because an important similarity of vocals parameters is not strange.

• Low fraud detection: a high quality recorded voice would allow the access if
the phrase to pronounce is not, for instance, variable or random.

4 Face identification

Face identification [3, 4, 13, 9, 7] (figure 5) is a very active pattern recognition
area with a wide range of application and is one of the methods with a bigger
growing. A face recognition system has to deal with variation of face images in
viewpoint, illumination, background, gesture and facial details. It is a complex
and very interesting problem because it has many applications. Unfortunately, it
generates important distrusts in subjects, mainly in people worried with possible
outrage against privacy and people’s rights by technology.

Nowadays it is an active research area, so there is not agreement with the best
features and comparison methods. Anyway, the idea is to save local data (eyes,
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Figure 5: Face identification

mouth, nose, etc) and global data (position in the face of each feature) and join
them in a model that allow us identification and an efficient search.

A typical system has two main steps. In the first one the idea is to find the
face in the image, recognising it from background. In the second one the face is
preprocessed and its parameters are compared with those previously saved. From
the flexibility of the first step depends the system range of application and from the
precision of the second one, its performance.

As in hand geometry or speaker identification, in this moment face identification
can not be used in security applications with a great sets of suspects or high security
access requirements by itself. It must be used joined with classical methods, as cards
or pins. The last attempts of use it in terrorist localisation have been a great failure.
The most known of them is the Florida Police Department attempt in Tampa airport.

On the one hand, its main advantages are:

• Easy measurement. The price of the needed hardware (cameras) is small and
images acquisition can be unknown for subjects.

• High universality: each face can be found if it is not hidden by clothes.

• Good performance: Verification is possible with normal computing resources
and the research is also possible for saved sets with a small or medium size (in
the range of a few hundreds of faces). The size of the saved data can be stored
in current systems easily.

• High acceptability: users are not delayed in its access or work.

On the other hand, its main drawbacks are:
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• Low permanence: face appearance can quickly and easily change by using
beard, glasses, hair, etc.

• Low oneness: nowadays, the ability to distinguish two subjects is only medium.

• Low fraud detection: the use of disguises or accessories as glasses, hats, shawls,
make-up, dyeing and even haircuts or specific hairstyles can confuse the system.
Other fraud ways as masks or photographs are possible, but they are difficult
to use if 3D systems of thermal images are used.

5 Palmprint identification

The set of palm hand lines [5] (figure 6), from the beginning of fingers to the wrist,
is other feature that can allow us to identify subjects [6]. Although years ago the
prints of inked palms on paper were used, nowadays cameras and scanners are used
in palm acquisition.

Figure 6: Palmprint identification

Principal lines are the main palmprint feature. However, a big number of sec-
ondary lines are also important. These secondary lines are called wrinkles and they
look like the finger minutiaes. The set composed by these two sets is considered an
unique pattern for subjects identification. As in the fingerprints case, twin broth-
ers can be also distinguished and their palmprints are similar, but not identical.
Moreover, hand lines are more difficult to blind than finger minutiaes by dirty or
acidics.

The main advantages of this method are:

• High measurement simplicity. Hardware (cameras and scanners) is cheap.
High resolution or colour images are not required.
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• Good performance. There are efficient algorithms for palmprint verification.
The palmprint basic information can be saved in a small storage space.

• High oneness. Is very unprovable that the palmprint of two different hand
could be identical.

• High permanence. It is known that the essential invariance of palmprint re-
mains along the life of subjects.

• It is also known that the palmprint pattern is more difficult to hide than
fingerprint patterns by using dirty or acidics.

• The method has a good acceptability on subjects.

The main disadvantages are:

• If a scanner is used as input device many subjects do not like touching a device
touched by other subjects.

• The acquisition can not be unknown for users.

• This method is newer than others, thus it is not so well-known as them.

6 Biometric security system from the “Instituto de Tec-
noloǵıa Informática”

The Instituto de Tecnoloǵıa Informática (ITI) has a long experience in the develop-
ment of biometric security systems. The first one was an AFIS system (Automatic
Fingerprints Identification System).

There are many biometric systems, each one with its field of application. How-
ever, today the trend in high security system is to use more than one approximation
at the same time [15, 14]. This multiway approximation (figure 7) reduces FAR and
FRR, and improves the system performance.

In our days, ITI efforts are focused in face recognition and speaker recognition.
Both of them provide high acceptability and have a low price of input devices. In
both system users do not have neither to touch nor to interface directly with the
input device. Users are only required to place in front of the camera and speak. One
of the main drawbacks of the system is the low fraud detection.

Due to this drawback, ITI is now working in joining both biometric identification
systems. The composition of both systems gives a better confidence reliability than
the obtained by the isolated systems. The face recognition result join with the
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Figure 7: Multiway biometric identification

speaker recognition result are joined in an unique value that the system evaluates
to compute the final result.

Nowadays the ITI has developed several prototypes and demonstrations for these
technologies of biometric security. First, an access control system has been developed
to allow or refuse the access to buildings, using both technologies: face and speaker
recognition (figure 8). Second, other entry-system that uses palmprint recognition
(figure 9) has been developed. Third, a detection and face recognition demo is avail-
able. Finally, a set of development libraries and tools (SDK) have been developed
for integrating this technology in a given application.
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Abstract

The information contained in hyperspectral images allows the characteriza-
tion, identification, and classification of the land-covers with improved accuracy
and robustness. However, several critical problems should be considered in clas-
sification of hyperspectral images, among which: (i) the high number of spectral
channels, (ii) the spatial variability of the spectral signature, (iii) the high cost
of true sample labeling, and (iv) the quality of data. Many statistical and neural
methods have been applied succesfully to this problem but some shortcomings
are noticeable which have been recently alleviated by the introduction of kernel
methods.

The chapter systematically discusses the specific problems and demands
of this field, and reviews the most relevant works developed in our research
group in hyperspectral image classification using kernel methods. We review the
first attempts on neural and neurofuzzy approaches and how the introduction
of kernel classifiers result in more accurate and robust outcomes. Also, we
present a novel composite kernel-based approach which integrates the spatial
and spectral domains simultaneously.

Keywords: Support vector machine, SVM, landcover classification, knowledge
discovery, neural networks, composite kernel, hyperspectral, image classification,
texture, contextual, spectral.

1 Introduction to Remote Sensing

Materials in a scene reflect, absorb, and emit electromagnetic radiation in a different
way depending of their molecular composition and shape. Remote sensing exploits
this physical fact and deals with the acquisition of information about a scene (or
specific object) at a short, medium or long distance. The radiation acquired by an

∗ This research has been partially supported by the CICYT under Project DATASAT
and by the “Grups Emergents” programme of Generalitat Valenciana under project HYPER-
CLASS/GV05/011.
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(airborne or satellite) sensor is measured at different wavelengths and the resulting
spectral signature (or spectrum) is used to identify a given material. The field of
spectroscopy is concerned with the measurement, analysis, and interpretation of such
spectra [1, 2].

Hyperspectral sensors are a class of imaging spectroscopy sensors acquiring hun-
dreds of contiguous narrow bands or channels. Hyperspectral sensors sample the
reflective portion of the electromagnetic spectrum ranging from the visible region
(0.4-0.7µm) through the near-infrared to the near-infrared(about 2.4 µm) in hun-
dreds of N narrow contiguous bands about 10 nm wide or less1. Hyperspectral sen-
sors represent an evolution in technology from earlier multispectral sensors, which
typically collect spectral information in only a few discrete, non-contiguous wide
bands.

The high spectral resolution characteristic of hyperspectral sensors preserves
important aspects of the spectrum (e.g., shape of narrow absorption bands), and
makes differentiation of different materials on the ground possible. The spatially
and spectrally sampled information can be described as a data cube (colloquially
referred to as “the hypercube”), which includes two spatial coordinates and the
spectral one (or wavelength). As a consequence, each image pixel is defined in a
high dimensional space where each dimension corresponds to a given wavelength
interval in the spectrum, xi ∈ R

N , where N is the number of spectral channels or
bands.

Remote sensing images acquired by previous generation multispectral sensors
(such as the widely used Landsat Thematic Mapper sensor), have shown their use-
fulness in numerous Earth Observation (EO) applications. In general, the relatively
small number of acquisition channels that characterizes multispectral sensors may
be sufficient to discriminate among different land-cover classes (e.g., forestry, water,
crops, urban areas, etc.). However, their discrimination capability is very limited
when different types (or conditions) of the same species (e.g., different types of
forest) are to be recognized. Hyperspectral sensors can be used to deal with this
problem and represents a further step ahead in achieving the main general goals of
remote sensing, which are:

1. “Monitoring and modeling the processes on the Earth surface and their inter-
action with the atmosphere.”

2. “Obtaining quantitative measurements and estimations of geo/bio/physical vari-
ables.”

3. “Identifying materials on the land cover analyzing the acquired spectral signa-
tures by satellite/airborne sensors.”

1Other types of hyperspectral sensors exploit the emissive properties of objects by collecting
data in the mid-wave and long-wave infrared (MWIR and LWIR) regions of the spectrum.
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(a)

(b)

(c)

(d)

Figure 1: Illustrative examples of encountered problems in hyperspectral image
classification: (a) a terrestrial campaign is necessary to accurately obtain a labeled
training set, (b) different sensors provide different spectral and spatial resolutions
from the same scene, (c) defining a class is sometimes difficult (‘what is a forest?’),
and (d) images from the same scene acquired at different time instants contain
different spectral and spatial characteristics.

To attain such objectives, the remote sensing community has evolved to a multi-
disciplinary field of science that embraces physics, chemistry, biology, signal theory,
computer science, electronics, and communications. From a machine learning and
signal/image processing point of view, all these problems and applications are tackled
under specific formalisms (classification, regression, modeling, image coding, spectral
unmixing, etc) and among all of them, classification of hyperspectral images has
become an important field of remote sensing.

2 Hyperspectral Image Classification. From neural to
kernel methods

The information contained in hyperspectral images allows more accurate and robust
characterization, identification, and classification of the land-covers [3]. Neverthe-
less, unlike multispectral data, hyperspectral images can not be analyzed by manual
photo-interpretation or visual inspection, as the hundreds of available spectral chan-
nels (images) do not make it possible to accomplish this task. Consequently, many
researchers have turned to techniques for addressing hyper-dimensional classification
problems from the fields of statistics and machine learning in order to automatically
generate reliable supervised and unsupervised classifiers. Unsupervised methods are
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not sensitive to the ratio between number of labeled samples and number of fea-
tures, since they work on the whole image, but the correspondence between clusters
and desired classes is not ensured. Consequently, supervised methods are preferable
when the desired input-output mapping is well-defined and a training set of true
labels is available. However, several critical problems arise when dealing with the
supervised classification of hyperspectral images:

1. The high number of spectral channels in hyperspectral images and the rel-
atively low number of available labeled samples (due to the high cost of
groud-truth collection process) poses the problem of curse of dimensionality
or Hughes phenomenon [4] (see Fig. 1(a)).

2. The spatial variability of the spectral signature of each land-cover class (which
is not stationary in the spatial domain) results in a critical variability of the
values of feature-vector components of each class (see Figure 1(b)).

3. Uncertainty and variability on class definition (see Fig. 1(c)).

4. Temporal evolution of the Earth’s cover (see Fig. 1(d)).

5. Illumination and athmospherical conditions, along with angular effects also
increase the level of difficulty for classification.

6. The presence of different noise sources and uncertainties in the acquired image,
e.g. in the measurement instrumental, observational noise, and uncertainty in
the acquisition time.

In this context, robust and accurate classifiers are needed. In the remote sensing
literature, many supervised methods have been developed to tackle the multispec-
tral image classification problem. A successful approach to multispectral image
classification is based on the use of artificial neural networks [5–8]. However, these
approaches are not effective when dealing with a high number of spectral bands
(Hughes phenomenon [4]), or when working with low number of training samples
(ill-posed problems).

Much work has been carried out in the literature to overcome the aforementioned
problem. Four main approaches can be identified: 1) regularization of the sample
covariance matrix in statistical classifiers; 2) adaptive statistics estimation by the
exploitation of the classified (semi-labeled) samples; 3) pre-processing techniques
based on feature selection/extraction, aimed at reducing/transforming the original
feature space into another space of a lower dimensionality; and 4) analysis of the
behaviour of the spectral signatures to model the classes.

An elegant alternative approach to the analysis of hyperspectral data consists
of kernel methods [9–11]. Many works have been presented in the last decade de-
veloping hyperspectral kernel classifiers. Support Vector Machines (SVMs) were
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first applied to hyperspectral image classification in [12], and their capabilities were
further analyzed in [13–18] in terms of stability, robustness to noise, and accuracy.
Some other kernel methods have been recently presented to improve classification,
such as Kernel PCA [14], the kernel Fisher discriminant (KFD) analysis [19], the
regularized AdaBoosting [20], or Support Vector Clustering (SVC) [21, 22]. Lately,
some kernel formulations have appeared in the context of target and anomaly de-
tection [23,24], which basically consists of using the spectral information of different
materials to discriminate between the target and background signatures. Finally,
in [25], an extensive comparison of kernel-based classifiers (RBF neural networks,
SVM, KFD, and regularized AdaBoosting) was conducted by taking into account
the peculiarities of hyperspectral images, i.e. assessment was conducted in terms of
the accuracy of methods when working in noisy environments, high input dimension,
and limited training sets.

3 Classification of HyMap hyperspectral images with
neural networks and SVMs

3.1 Neural and neurofuzzy networks

The traditional model of a feedforward multilayer neural network, commonly known
as multilayer perceptron (MLP), is composed of a fully-connected layered arrange-
ment of artificial neurons in which each neuron of a given layer feeds all the neurons
of the next layer [26] (Fig. 2(a)). An MLP for multiclassification requires an output
node for each class if no output coding is performed. Training of the network can
be accomplished using the backpropagation learning algorithm [27].

In a Radial Basis Functions (RBF) neural network, notationally, the sigmoid-
shape activation function of an MLP is substituted by a Gaussian function (Fig.
2(b)). The learning rule to update weight and variance vectors can be derived by
using the delta rule. Gaussian-like RBFs are local, i.e. give a significant response
only in a neighbourhood near the centre. These features induce good mappings but,
in turn, may produce overfitting and yield poor results with uncertain inputs (noisy
environments), and thus regularization becomes necessary [25].

A very promising paradigm in machine learning is constituted by the neurofuzzy
approach in which, fuzzy logic and neural networks are combined. The Co-Active
Neuro-Fuzzy Inference Systems (CANFIS) model integrates adaptable fuzzy inputs
with a modular neural network to rapidly and accurately approximate complex
functions (Fig. 2(c)). Fuzzy inference systems are also valuable as they combine
the explanatory nature of rules (membership functions, MF) with the power of
neural networks. These kinds of fuzzy networks solve problems more efficiently
than common feedforward neural networks when the underlying function to model
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Figure 2: Schematic of the neural networks used in this work. (a) In an MLP, each
neuron passes the weighted sum of its inputs through a sigmoid-shape function (e.g.
hyperbolic tangent). The output of a neuron in a given layer acts as an input to
neurons in the next layer. In the network illustration, each line represents a synaptic
connection. (b) In an RBF neural network, the sigmoidal activation function of an
MLP is replaced by a Gaussian function with adjustable widths and centers. (c) A
two-input, one-output CANFIS network and an illustration of output calculation.

is highly variable or locally extreme since, in those cases, MLP or RBF networks
attempt to discover a global optimization. The fundamental component of CANFIS
is a fuzzy axon which applies membership functions to the inputs. Basically, two
membership function types can be used (Gaussian or generalized bell). Fuzzy axons
are valuable because their MF can be modified through backpropagation during
network training to expedite the convergence. A second advantage is that fuzzy
synapses aid in characterizing inputs that are not easily discretized. The second
major component of CANFIS is a modular network that applies functional rules
to the inputs. Two fuzzy structures are mainly used; the Tsukamoto model and
the Sugeno (TSK) model. Finally, a combiner is used to apply the MF outputs to
the modular network outputs. The combined outputs are then channeled through a
final output layer and the error is backpropagated to both the MF and the modular
network. Full details of this network can be found in [28].
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3.2 Support Vector Machines

Neural networks and other gradient-descent based methods are trained in order to
minimize the so-called empirical risk, i.e. the error in the training data set and,
therefore, follow the Empirical Risk Minimization (ERM) principle. However, to
attain significant results in the validation set (“out-of-sample” dataset), stopping-
criteria or pruning techniques must be used. On the other hand, SVMs have been
recently proposed as an efficient method for pattern classification and nonlinear
regression. Their appeal lies in their strong connection to the underlying statistical
learning theory where an SVM is an approximate implementation of the method of
structural risk minimization (SRM) [9]. This principle states that a better solution
(in terms of generalization capabilities) can be found by minimizing an upper bound
of the generalization error. SVMs have many attractive features. For instance, the
solution of the quadratic programming (QP) problem is globally optimized while,
with neural networks, the gradient based training algorithms only guarantee finding
a local minima. In addition, SVM, can handle large input spaces, which is especially
convenient when working with hyperspectral data, can effectively avoid overfitting
by controlling the margin, and can automatically identify a small subset made up
of informative points, namely support vectors (SV).

The basic formulation for binary classification using SVMs is as follows. Given a
labeled training data set {(x1, y1), . . ., (xn, yn)}, where xi ∈ R

N and yi ∈ {−1, +1},
and a nonlinear mapping φ(·), usually to a higher (possibly infinite) dimensional
(Hilbert) space, φ : R

N −→ H, the SVM method solves:

min
w,ξi,b

{
1
2
‖w‖2 + C

∑
i

ξi

}
(1)

constrained to:

yi(〈φ(xi),w〉 + b) ≥ 1 − ξi ∀i = 1, . . . , n (2)
ξi ≥ 0 ∀i = 1, . . . , n (3)

where w and b define a linear classifier in the feature space. The non-linear mapping
function φ is performed in accordance with Cover’s theorem [29], which guarantees
that the transformed samples are more likely to be linearly separable in the resulting
feature space. The regularization parameter C controls the generalization capabil-
ities of the classifier and it must be selected by the user, and ξi are positive slack
variables enabling to deal with permitted errors.

Due to the high dimensionality of vector variable w, primal function (1) is usually
solved through its Lagrangian dual problem, which consists of solving

max
αi

⎧⎨
⎩
∑

i

αi −
1
2

∑
i,j

αiαjyiyj〈φ(xi),φ(xj)〉

⎫⎬
⎭ (4)
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constrained to 0 ≤ αi ≤ C and
∑

i αiyi = 0, i = 1, . . . , n, where auxiliary variables
αi are Lagrange multipliers corresponding to constraints in (2). It is worth noting
that all φ mappings used in the SVM learning occur in the form of inner products.
This allows us to define a kernel function K:

K(xi,xj) = 〈φ(xi),φ(xj)〉, (5)

and then a non-linear SVM can be constructed using only the kernel function, with-
out having to consider the mapping φ explicitly. Then, by introducing (5) into (4),
the dual problem is obtained. After solving this dual problem, w =

∑n
i=1 yiαiφ(xi),

and the decision function implemented by the classifier for any test vector x is given
by f(x) = sgn (

∑n
i=1 yiαiK(xi,x) + b), where b can be easily computed from the αi

that are neither 0 nor C, as explained in [11].

3.3 Material and experimental setup

We used six hyperspectral images acquired with the 128-bands HyMap airborne
spectrometer during the DAISEX-99 campaign (http://io.uv.es/projects/daisex/).
More information about the data collection, Hymap calibration and atmospheric
correction can be retrieved from [30]. Six different classes were considered in the
area (corn, sugar beet, barley, wheat, alfalfa, and soil), which were labelled from
�1 to �6, respectively. In this sense, the task is referred to as a multiclassification
pattern recognition problem. Two data sets (training and validation sets) were
built (150 samples/class each) and models were selected using the cross-validation
method. Finally, a test set consisting of the true map on the scene over complete
images was used as the final performance indicator. In each one of the six images
(700×670 pixels), the total number of test samples is 327,336 (corn 31,269; sugar
beet 11,322; barley 124,768; wheat 53,400; alfalfa 24,726; and bare soil 81,851) and
the rest is considered unknown.

Once the desired input-output mapping for training and validation are defined,
usually a feature selection stage is used to reduce dimension of the input space. This
can make the training process feasible and improve results by removing noisy irrel-
evant bands. However, design and application of dimension-reduction techniques is
time-consuming and scenario-dependent, which are evident problems to circumvent.
In fact, we are not only interested in the classification accuracy provided by each
method but also in their suitability to real-time working conditions whenever a fea-
ture selection stage is not possible. This scenario is simulated by considering models
with and without a feature selection stage. The proposed learning scheme is shown
in Fig. 3. In particular, previous work [30] in feature selection yielded three subsets
of representative features (6, 3 and 2 bands), which induce three different pattern
recognition problems, respectively.
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Figure 3: Diagram of the hyperspectral data classification process. A training data
set is extracted from the the six collected images and then a CART-based feature
selection stage yields three representative subsets (consisting of 6, 3 and 2 bands,
respectively) [30], which constitute three different pattern recognition problems,
respectively. An additional scenario considering the whole training data set (128
bands) incorporates. Four classifiers are thus implemented and tested in the six
whole images.

3.4 Model development

As regards the MLP and RBF models, we varied the number of hidden neurons
(< 100 to avoid overfitting), the weight initialization range and the learning rate
(between 0.01 and 3) in order to determine the best topology. A great amount of
CANFIS models were developed by varying the number (2-8) and structure (Bell
and Gaussian) of the MF and the fuzzy model (TSK and Tsukamoto), along with
the number of hidden layers (2-5) and step size (0.001-0.1). The momentum term
remained constant and equal to zero.

In the case of SVMs, nonlinear classifiers were obtained by taking the dot product
in kernel-generated spaces. The following kernels have been used in this work: (1)
Linear: K(xi,xj) = xi ·xj , (2) Polynomial: K(xi,xj) = (xi · xj + 1)d, and (3) Gaus-
sian (RBF): K(xi,xj) = exp

(
−γ‖xi − xj‖2

)
. Note that one or more free parameters

must be previously settled in the nonlinear kernels (polynomial degree d, Gaussian
width γ) together with the penalization parameter C. In all cases, we considered
equiprobable classes for training and validation and thus no individual penalization
parameter was used [31]. However, the test set contains highly unbalanced classes
and thus, the latter practice could improve results if the training process were in-
tentionally driven by priors. However, this would not be a fair assumption for our
purposes, i.e. achieving an automatic scenario-independent classifier.

The selection of the best subset of free parameters is usually done by cross-
validation methods but this can lead to poor generalization capabilities and lack
of representation. We alleviated this problem by using the 8-fold cross-validation
method2 with the training data set.

2The 8-fold cross–validation uses 7/8 of the data for training and 1/8 for validation purposes.
This procedure is repeated eight times with different validation sets.
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Many discriminative methods, including neural networks and SVMs, are often
more accurate and efficient when dealing with only two classes. For large numbers of
classes, higher-level multiclass methods utilize these two-class classification methods
as the basic building blocks, namely “one-against-the-rest” procedures. However,
such approaches lead to suboptimal solutions when dealing with multiclass problems
and the well-known problem of the “false positives”. Therefore, we have used a
multiclassification scheme for all the methods.

All neural models were developed in MATLAB� environment (Mathworks, Inc).
In the case of SVM, we used the libSVM implementation, which is freely available
from http://www.csie.ntu.edu.tw/∼cjlin/.

3.5 Model comparison

Table 1 shows the average recognition rate (ARR[%]) of the six images in training,
validation, and test sets. The ARR% is calculated as the rate of correctly classified
samples over the total number of samples averaged over the six available images.
Section 3.3 contains details on the training, validation and test sets.

Some conclusions can be drawn from Table 1. SVMs perform better than neural
networks in all scenarios. Moreover, when a feature selection stage is not possible,
and thus 128 bands should be used, the computational burden involved in the train-
ing process of neural networks make these methods unfeasible. In contrast, SVMs
are not drastically affected by input dimension and presence of noisy bands. This
has sometimes led to the idea that a feature selection is not necessary when working
with SVMs, which is not completely true, as shown in [11,32]. In noisy applications,
a feature selection is not only recommendable but mandatory, since it could remove
undesired features and better results could thus be obtained. In our case study, no
numerical (ARR<3%) or statistical (κ scores in the range [0.6,0.8]) differences are
found between SVMs with and without a step for dimensionality reduction prior to
classification. This indicates that noisy bands have been successfully identified and
their contribution to the final decision attenuated without decreasing the recognition
rate. Therefore, two preliminary conclusions can be extracted:

1. SVMs have proven to be efficient models that inherently detect noisy features.

2. A feature selection step slightly improves results.

This induces a clear trade-off: we could obtain good results by using an SVM with-
out a preliminary feature selection stage or, we could (slightly) improve results by
including a dedicated feature selection step, which is time-consuming and requires
more effort. Depending on the application requirements, the user could choose be-
tween these two options.
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Table 1: Average recognition rates (ARR [%]) of the six images in training, valida-
tion, and test sets for different models. The four subsets (128, 6, 3, 2 bands) are
evaluated, all of them containing 150 samples per class. The column “Features”
gives some information about the final models. For the case of SVMs, we indicate
in brackets the penalization parameter, the kernel used and its optimal parameters
(polynomial order d or Gaussian width γ), and the rate of support vectors, respec-
tively. Bold face font is used to indicate the best kernel in each subset. For the case
of neural networks, we indicate the number of input×hidden×output nodes.

METHOD FEATS. TRAIN. VALID. TEST
SVM128 Linear 99.89 98.78 95.45
SVM128 Polynomial 100 98.78 95.53

(5.59, 4, 12.11%)
SVM128 RBF 100 97.78 94.13
SVM6 Linear 99.89 99.33 94.44
SVM6 Polynomial 99.79 99.44 96.44

(20.57, 4, 8.67%)
SVM6 RBF 100 98.78 94.87
SVM3 Linear 89.00 87.22 81.31
SVM3 Polynomial 88.89 87.44 82.03
SVM3 RBF 91.22 91.00 85.16

(35.94, 10−5, 12.88%)
SVM2 Linear 89.11 88.33 81.42
SVM2 Polynomial 89.11 88.33 82.55
SVM2 RBF 89.11 89.11 82.68

(43.29, 10−2, 16.88%)
MLP128 - - - -
MLP6 6×5×6 99.33 99.44 94.53
MLP3 3×25×6 90.22 87.67 82.97
MLP2 2×27×6 88.00 85.67 81.95

RBF128 - - - -
RBF6 6×16×6 98.88 98.80 94.10
RBF3 3×31×6 88.20 87.00 81.44
RBF2 2×18×6 87.33 85.25 81.62

CANFIS128 - - - -
CANFIS6 6×2×7×6 98.68 96.66 94.22
CANFIS3 3×3×12×6 89.20 88.77 81.64
CANFIS2 2×8×15×6 86.33 86.00 81.82

In the same table, we also observe that, as the dimension of the input space
is lower, neural networks degrade more rapidly than SVMs do. In that sense, the
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Figure 4: (a) RGB composite of the red, green and blue channels from 128-bands
HyMAP image taken in June, 1999 of Barrax (Spain). (b) Map of the whole image
classified with the labels of the classes of interest.

complexity3 of all models increases as the input dimension decreases. In fact, RBF
kernels and more than 15% of SVs are strictly necessary to attain significant results
with less than six bands. Despite the fact that the polynomial kernel has been
claimed to be specially well-suited for hyperspectral data classification [35], it has
yielded results similar to the ones for the linear kernel in our case (see the next
section for details).

Figure 4 shows the original and the classified samples for one of the collected
images. Corn classification seems to be the most troublesome. The reason for that
is the presence of a whole field of two-leaf corn in the early stage of maturity, where
soil was predominant and was not accounted for the reference labelled image. The
confusion matrix supports this conclusion as most of the errors are committed with
the bare soil class.

4 Classification of AVIRIS hyperspectral images with
composite kernels

The good classification performance demonstrated by SVMs (cf. Section 3) using the
spectral signature as input features can be further increased by including contextual
(or even textural) information in the classifier. This can be easily carried out by

3We evaluate the model’s complexity in terms of the kernel used and the number of SVs in the
SVM approach, and in terms of the number of hidden neurons in the neural networks. We have
based this decision on the works [11, 33, 34], where an intuitive relation between neural networks
and Support Vector Machines is sketched.
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means of the composite kernels framework, in which one exploits the properties of
Mercer’s kernels.

4.1 Composite kernels formulation

For this purpose, a pixel entity xi is redefined simultaneously both in the spectral
domain using its spectral content, xω

i ∈ R
Nω , and in the spatial domain by applying

some feature extraction to its surrounding area, xs
i ∈ R

Ns , which yields Ns spatial
(contextual) features, e.g. the mean or standard deviation per spectral band. These
separated entities lead to two different kernel matrices, which can be easily computed
using any suitable kernel function that fulfills Mercer’s conditions. At this point, one
can sum spectral and textural dedicated kernel matrices (Kω and Ks, respectively),
and introduce the cross-information between textural and spectral features (Kωs and
Ksω) in the formulation. This simple methodology yields a full family of composite
methods for hyperspectral image classification [36], which can be summarized as
follows:

• The stacked features approach. Let us define the mapping φ as a transfor-
mation of the concatenation xi ≡ {xs

i , xω
i }, then the corresponding ‘stacked’

kernel matrix is:

K{s,ω} ≡ K(xi,xj) = 〈φ(xi),φ(xj)〉, (6)

which does not include explicit cross relations between xs
i and xω

j .

• The weighted summation kernel. Let us define (a weighted) concatenation
of nonlinear transformations of xs

i and xω
i , which finally yield the following

composite kernel:

K(xi,xj) = µKs(xs
i ,x

s
j) + (1 − µ)Kω(xω

i ,xω
j )

where µ is a positive real-valued free parameter (0 < µ < 1), which is tuned
in the training process and constitutes a trade-off between the spatial and
spectral information to classify a given pixel.

• The cross-information kernel. Finally, one can define a weighted sum of
positive definite matrices, accounting for the textural, spectral, and cross-terms
between textural and spectral counterparts:

K(xi,xj) = Ks(xs
i ,x

s
j) + Kω(xω

i ,xω
j ) + Ksω(xs

i ,x
ω
j ) + Kωs(xω

i ,xs
j) (7)
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4.2 Data collection

Experiments were carried out using the familiar AVIRIS image taken over NW
Indiana’s Indian Pine test site in June 1992 [37]. Following [12], we first used a
part of the 145×145 scene, called the subset scene, consisting of pixels [27-94]×[31-
116] for a size of 68×86, which contains four labeled classes (the background pixels
were not considered for classification purposes). Second, we used the whole scene,
consisting of the full 145×145 pixels, which contains 16 classes, ranging in size from
20 pixels to 2468 pixels. We removed 20 noisy bands covering the region of water
absorption, and finally worked with 200 spectral bands. In both datasets, we used
20% of the labeled samples for training and the rest for validation.

4.3 Model development

In all cases, we used the polynomial kernel (d = {1, . . . , 10}) for the spectral features
according to previous results [12,16], and used the RBF kernel (σ = {10−1, . . . , 103})
for the spatial features according to the locality assumption in the spatial domain. In
the case of the weighted summation kernel, µ was varied in steps of 0.1 in the range
[0,1]. For simplicity and for illustrative purposes, µ was the same for all labeled
classes in our experiments. For the ‘stacked’ (K{s,ω}) and cross-information (Ksω,
Kωs) approaches, we used the polynomial kernel. The penalization factor in the SVM
was tuned in the range C = {10−1, . . . , 107}. A one-against-one multiclassification
scheme was adopted in both cases.

The most simple but powerful spatial features xs
i that can be extracted from a

given region are based on moment criteria. In this chapter, we take into account the
first two momenta to build the spatial kernels. Two situations were considered: (i)
using the mean of the neighborhood pixels in a window (dim(xs

i ) = 200) per spectral
channel or (ii) using the mean and standard deviation of the neighborhood pixels in
a window per spectral channel (dim(xs

i ) = 400). Inclusion of higher order momenta
or cumulants did not improve the results in our case study. The window size was
varied between 3×3 and 9×9 pixels in the training set.

4.4 Model comparison

Table 2 shows the validation results of several classifiers for both images (averaged
over 10 random realizations that were obtained to avoid skewed conclusions). We
include results from six kernel classifiers: spectral (Kω), contextual (Ks), the stacked
approach (K{s,ω}), and the three presented composite kernels. In addition, two
standard methods are included for baseline comparison: bLOOC + DAFE + ECHO,
which uses contextual and spectral information to classify homogeneous objects, and
the Euclidean classifier [38], which only uses the spectral information. All models
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Table 2: Overall accuracy, OA[%], and kappa statistic, κ, on the validation sets
of the subset and whole scenes for different spatial and spectral classifiers. The
best scores for each class are highlighted in bold face font. The OA[%] that are
statistically different (at 95% confidence level, as tested through paired Wilcoxon
rank sum test) from the best model are underlined.

SUBSET WHOLE
SCENE SCENE

OA[%] κ OA[%] κ

Spectral classifiers†

Euclidean [38] 67.43 — 48.23 —
bLOOC+DAFE+ECHO [38] 93.50 — 82.91 —
Kω [12] 95.90 — 87.30 —
Kω developed in this chapter 95.10 0.94 88.55 0.87

Spatial-spectral classifiers
Mean

Ks 93.44 0.92 84.55 0.82
K{s,ω} 96.84 0.97 94.21 0.93
Ks + Kω 97.12 0.97 92.61 0.91
µKs + (1 − µ)Kω 97.43 0.97 95.97 0.94
Ks + Kω + Ksω + Kωs 97.44 0.97 94.80 0.94

Mean and standard deviation ‡
Ks 94.86 0.94 88.00 0.86
K{s,ω} 98.23 0.97 94.21 0.93
Ks + Kω 98.26 0.98 95.45 0.95
µKs + (1 − µ)Kω 98.86 0.98 96.53 0.96

† One difference with the data and results reported in [38] is that they studied the scene using
17 classes (Soybeans-notill was split into two classes) whereas we used 16 classes. Also note that
the use of the LOOC algorithm instead of the bLOOC algorithm could improve performance, as
proposed in [39,40]. Differences between the obtained accuracies reported in [12] and the presented
here could be due to the random sample selection, however they are not statistically significant. ‡

Note that by using mean and standard deviation features, Nω �= Ns and thus no cross kernels (Ksω

or Kωs) can be constructed.

are compared numerically (overall accuracy, OA[%]) and statistically (kappa test
and Wilcoxon rank sum test).

Several conclusions can be obtained from Table 2. First, all kernel-based meth-
ods produce better (and statistically significant) classification results than previ-
ous methods (simple Euclidean and LOOC-based method), as previously illustrated
in [12]. It is also worth noting that the contextual kernel classifier Ks alone pro-
duces good results in both images, mainly due to the presence of large homogeneous
classes and the high spatial resolution of the sensor. Note that the extracted tex-
tural features xs

i contain spectral information to some extent as we computed them
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per spectral channel, thus they can be regarded as contextual or local spectral fea-
tures. However, the accuracy is inferior to the best spectral kernel classifiers (both
Kω implemented here and in [12]), which demonstrates the relevance of the spectral
information for hyperspectral image classification. Furthermore, it is worth men-
tioning that all composite kernel classifiers improved the results obtained by the
usual spectral kernel, which confirms the validity of the presented framework. This
improvement was higher in the most difficult case of the whole scene (11% increase
vs. 4% in the subset image) since the spatial variability of the spectral signature was
reduced, and classifiers take advantage of the spatial correlation to enhance their
accuracy by correctly identifying neighboring classes.

The good numerical and statistical results obtained can be assessed by showing
the best classified images in Fig. 5 (whole scene). It is worth noting that narrow
inter-class boundaries are smoothed and better discerned with the inclusion of com-
posite kernels. Finally, two relevant issues should be highlighted from the obtained
results: (i) optimal µ and window size seem to act as efficient alternative trade-off
parameters to account for the textural information (µ = 0.2 and 7×7 for the subset
image, µ = 0.4 and 5 × 5 for the whole image), and (ii) results have been signif-
icantly improved without considering any feature selection step previous to model
development. These findings should be further explored in more applications and
scenarios. In conclusion, composite kernels offer excellent performance for the clas-
sification of hyperspectral images by simultaneously exploiting both the spatial and
spectral information.

5 Discussion and Conclusions

In this chapter, we have revised our experience in developing neural and kernel meth-
ods for hyperspectral image classification. Many experiments have been presented,
and a novel formulation that efficiently integrates the spatial and spectral informa-
tion has been considered to improve performance. The family of composite kernels
offers an elegant kernel formulation to integrate spatial and spectral information,
and opens a wide field for further developments.

In conclusion, we can state that, in the standard situation and in our case stud-
ies, the use of SVMs is more beneficial than neural networks, mainly because they
work efficiently with high input dimension samples, they ensure sparsity (over the
samples), and they have very few free parameters to tune. However, it is worth
noting that in order to attain significant results, the standard algorithm of SVMs
must be tailored to exploit the special characteristics of hyperspectral images, as
presented in the composite framework.
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(a) (b)

(c) (d)

Figure 5: Classification results in the whole image. (a) Labeled scene and classifi-
cation maps using the (b) contextual kernel, Ks (window size: 5 × 5), (c) spectral
kernel, Kω, and (d) weighted summation kernel (µKs + (1 − µ)Kω, µ=0.4, window
size: 5 × 5).
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[30] L. Gómez-Chova, J. Calpe, E. Soria, G. Camps-Valls, J. D. Mart́ın, and
J. Moreno. CART-based feature selection of hyperspectral images for crop
cover classification. In IEEE International Conference on Image Processing,
2003. Submitted.

[31] Y. Lin, Y. Lee, and G. Wahba. Support Vector Machines for classification
in nonstandard situations. Department of Statistics TR 1016, University of
Wisconsin-Madison, 2000. http://www.kernel-machines.org/.

[32] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, Tomaso Poggio, and Vladimir
Vapnik. Feature selection for SVMs. In NIPS, pages 668–674, 2000.

[33] B. Schölkopf, K.-K. Sung, C. J.C. Burges, F. Girosi, P. Niyogi, T. Poggio, and
V. N. Vapnik. Comparing support vector machines with gaussian kernels to
radial basis function classifiers. IEEE Trans. on Signal Processing, 45(11):2758–
2765, 1997.

[34] C. J. C. Burges. A Tutorial on Support Vector Machines for Pattern Recogni-
tion. Knowledge Discovery and Data Mining, 2(2):121–167, 1998.

[35] J. A. Gualtieri and R. F. Cromp. Support vector machines for hyperspectral
remote sensing classification. In Proceedings of the SPIE, 27th AIPR Workshop,
pages 221–232, February 1998.

[36] G. Camps-Valls, L. Gómez-Chova, J. Muñoz-Maŕı, J. Vila-Francés, and
J. Calpe-Maravilla. Composite kernels for hyperspectral image classification.
IEEE Geoscience and Remote Sensing Letters, In press, Nov 2005.

[37] D. Landgrebe. AVIRIS NW Indiana’s Indian Pines 1992 data set, 1992.
http://dynamo.ecn.purdue.edu/∼biehl/MultiSpec/documentation.html.

[38] S. Tadjudin and D. Landgrebe. Classification of High Dimensional Data with
Limited Training Samples. PhD thesis, School of Electrical Engineering and
Computer Science, Purdue University, May 1998. TR-ECE-98-9.

[39] Q. Jackson and D. A. Landgrebe. An adaptive method for combined covariance
estimation and classification. IEEE Transactions on Geoscience and Remote
Sensing, 40(5):1082–1087, May 2002.

[40] B-C. Kuo and D. A. Landgrebe. A covariance estimator for small sample size
classification problems and its application to feature extraction. IEEE Trans-
actions on Geoscience and Remote Sensing, 40(4):814–819, 2002.

94 Pattern Recognition : Progress, Directions and Applications



ITI Image Recognition and Artificial Vision

Group Activities ∗

J. Arlandis, J. Cano, J. Garćıa-Hernández,
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Abstract

The Image Recognition and Artificial Vision group of the ”Instituto Tecnologico
de Informática” is a part of a larger group (Pattern Recognition and Human
Language Technologies, PRHLT) in the same institution, focused on the field of
image analysis and computer vision under the Pattern Recognition Paradigm.

The group has been especially targeted to computer vision applications, and
their members have published a number of scientific papers and participated
in a variety of projects along the last 15 years. Some examples of tasks dealt
with in these projects are: industrial continuous material inspection, complex
image analysis, optical/intelligent character recognition, colour recognition and
other related areas like biometric identification (fingerprint, face and speaker
recognition).

1 Introduction

A main R+D work line at the ITI is focused in Computer Vision. The Image Recog-
nition and Artificial Vision group (RIVA) has a large experience in the field of
image analysis. It is demonstrated by the publication of scientific papers and its
participation in a variety of projects. The work developed by the group members is
mainly centered in the fields of Pattern Recognition and Perception Technologies.
The group has experience in tasks as continuous material inspection, complex im-
age analysis, optical/intelligent character recognition, colour recognition and other

∗ Work funded by the Agencia Valenciana de Ciencia y Tecnoloǵıa (AVCiT, ayuda para Grupos
I+D+I, GRUPOS03/031) and by the Comisión Interministerial de Ciencia y Tecnoloǵıa (CICYT,
TIC 2003-08496-C04)

Pattern Recognition : Progress, Directions and Applications 95

Edited by F.Pla, P.Radeva, J.Vitrià, 2006.



related areas as biometric identification (fingerprint, face, palmprint and speaker
recognition).

2 Research Areas

In this section, the main research areas from the RIVA group are described in detail.

2.1 Document analysis

In many tasks a document digitalisation is needed. The problem to solve can differ
significantly for different sources of documents. For instance, the documents can be
handwritten or printed, the areas where the text is located can be previously known
or, on the opposite case, they can arise at random points, etc.

Several members of the RIVA group have taken part in projects related with
handwritten and printed optical character recognition [1, 2, 3, 4, 11]. As a results,
a proprietary character recognition engine has been developed, as well as different
tools designed ”ad-hoc” to perform each one of the tasks that arose in each of the
collaborations carried out with private companies skilled in this kind of tasks.

2.2 Medical image

One field in which digital image processing is providing invaluable help is medical
image analysis. Due to the great responsibility of tasks in this field, current computer
tools are designed to assist the professionals at their work and never substitute
them [12].

For instance, the ITI has collaborated with local hospitals in the design of assis-
tance tools to the diagnostic of prostate cancer with ultrasonographic images [14, 8].
Another similar tool is currently at experimentation stage and it’s aimed to assist
with the diagnostic of breast cancer from radiographic images [9, 10].

Finally, other group members are working in a collaboration project with another
technological institute, skilled in biomechanics, to develop an assistance tool to the
diagnostic of foot pathologies with the information extracted from pressure signal
data [7].

2.3 Scene analysis

Different computer vision tasks, in which the target is to recognise an object or
to identify a person, can be viewed as the result of a two-step image processing
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techniques. While the first one is the responsible for the location of the objects of
interest in a scene image (scene analysis) [13, 5], the second processing step should
be able to recognise the objects previously selected (recognition). Thus, it has to be
noted that scene analysis is a wide field that connects with a great variety of appli-
cations. Consequently, solutions devised to solve this problem follow very different
approximations.

The RIVA group has experience in license plate and face detection in natural
images, that is, designed to work in a wide range of acquisition conditions, including
unrestricted scene environments, light, perspective and camera-to-object distance.
This means that the complexity to locate an object in an image increases by variable
illumination, perspective and background conditions.

Figure 1: Scene analysis. Face segmentation

2.4 Industrial inspection

In this field, for example, there are many control processes without contact whose
restrictions or features do not allow for the use of conventional tools available on
the market. Among them: dimensional control process, measure, texture specifica-
tion parametrisation, shape, colour, all kind of manufacturing defects, like foreign
elements, dents, cracks, imperfections, etc

When one special feature of the process hinders the use of a commercial inspec-
tion product (”off the shelf”), often aimed at simple tasks, the application becomes
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Figure 2: Scene analysis. Plate segmentation

a potential R+D project.

Several members of the RIVA group took part in the design, development and
installation, in collaboration of company staff, of an inspection machine devoted to
the detection of textile printing defects.

3 Projects

In this section, a set of projects in collaboration with corporations are described.
In these projects the knowledge acquired at the pattern recognition field by the
artificial vision group are applied to solve real problems.

3.1 Handwritten text recognition (Document analysis)

Continuous handwriting text recognition is yet a challenge. Although text is basi-
cally composed of individual characters, many approximations to optical character
recognition do not achieve good results due to the extreme complexity of continuous
handwriting segmentation [17].

Nevertheless, human beings are able to easily segmentate and recognise hand-
written text. A way to achieve precision is to postpone recognition to a higher
level. A sentence can be better understood when it has been completely read. This
means a cooperative work among morphologic, lexical and syntactical levels that is
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performed by continuous speech recognition techniques.
This methodology employs robust and validated algorithms. Moreover, a previ-

ous segmentation is not required as it is automatically achieved by decodification.

A number of members of the Artificial Vision Group have collaborated with
private companies in the development of experimental systems able to recognise nu-
meric quantities written on bank checks and forms with written polls without any
language restrictions.

Figure 3: Document analysis. Handwritten text recognition.

3.2 Handwritten form recognition (Document analysis)

The system developed at the ITI takes advantage of OCR algorithms based on sta-
tistical classification methods in order to extract alphanumeric information from the
form fields. The characters are automatically extracted from the handwritten form
fields. The use of skilled models, automatically trained from samples, allows the
system to work with any language and alphabet.
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In main lines, the used preprocessing for digitalising a handwrite document can
be divided in these three steps:

• Preprocess: the fields and cells get isolated by a segmentation process. This
implies different image preprocess steps: noise removal, blank detection, min-
imum inclusion box definition and scale normalisation.

• Classification: Each isolated character is individually classified by the OCR
engine.

• Parsing: Each recognised string in a field is submitted to a syntactic analysis
process that rectifies, if it is needed, the original string to adjust it to a given
language model [15]. Finally, a corrected string and a confidence value is pro-
vided by the system as the result of the whole recognition process.

The ITI has participated in several collaboration projects with private companies
of the Valencian Community involved on automatic processing of thousand of text
documents, as the elaboration of the census or the digitalisation of official documents
(birth, marriage and decease bulletins).

Figure 4: Document analysis. Handwritten form recognition
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3.3 License plate recognition (Image analysis)

A license plate recognition engine designed to work with no restricted images (vari-
able illumination, perspective and background) is available.

At the segmentation stage areas of a texture similar to a license plate are
searched; this process produces a number of points classified as ”plate” and others
classified as ”no plate”. After that, a postprocess is applied to the points classified
as plate, grouping them together in one or more clusters and the area with higher
confidence to belong to a plate is returned as the plate segmentation hypothesis [5].

Finally, a multiple classification process is carried out over a set of pixels inside
the plate hypothesis. This classification process provides with a character string
that should be corrected by a known language model: the license plate format. In-
dividual classification errors can be rectified applying a syntactic analyser. As a
result, the recognition engine provides the plate identifier and a confidence level.

Several members of the Artificial Vision group have experience with private
companies working in this kind of application. A common effort is being made
among them to design and develop a whole license plate recognition system, aimed
to be installed at the accessing points of a public parking.

3.4 Assistance to Prostate Cancer Detection (Medical Image)

The target of this project is to develop an automatic assistance system to the prostate
cancer diagnosis from ultrasonographic images by means of image analysis and pat-
tern recognition techniques. This tool can help the professional expert in the decision
to realize a biopsy.

In order to discriminate between benign prostate diseases and malignant tu-
mors, a diagnosis test known as TRUS (TransRectal UltraSonography imaging) can
be used. A possible way to improve this TRUS-guided biopsying process is to use
computer-aided analysis of the ultrasonographic image. The basic idea is to develop
a computer-aided tool capable of highlighting the areas most likely to contain cancer
cells. A training of the system is supervised by selecting the previous image to the
biopsy (puncture) and labelling the biopsied area and the whole prostate. These
labelled samples are finally used as the training or test data.

Texture classification (cancer/no-cancer) can be obtained by:
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1. A confidence value of a fast neighbors search.

2. The probability of a hidden Markov model that models the two classes (cancer/no-
cancer).

Candidate cancer areas are coloured in a way that the proposed puncture area
can be easily seen.

Some of the members of the Artificial Vision group have large experience in this
field thanks to the collaboration with the Urology Department of one of the main
hospitals from Valencia.

3.5 Textile Quality Control (Industrial Inspection)

One of the first collaboration projects between ITI and a private company was tar-
geted to design, develop and build a whole system to perform a quality control task
in the textile printing process. The problem consisted on searching for printing de-
fects. Finally an inspection tool was built, that allowed the human operators of the
printing machine to register the first meters of the printed fabric and automatically
check for repetitive defects on the rest of the printed fabric.

Figure 5: Industrial Inspection. Detection of defects on the printed fabric.
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Figure 6: Industrial Inspection. Defect detail.

The textile printing process is a complex task. Among other things a precise
synchronism of the printing cylinders, as well as perfectly homogeneous dye supply
is required. Due to the previous highly demanding conditions, the appearance of
repetitive defects in the printed web is sadly frequent.

The development of small adherences of threads can be sometimes confused with
the texture of the printed pattern. A thread adherence blocks the dye printed onto
the fabric, producing an area of a brighter colour. The width of the web can reach
3.6 meters, making necessary the use of 4 lineal cameras in order to achieve enough
resolution to detect a defect as thin as a thread. Due to the mechanical stress
incurred in the high speed of the printing process, the printed fabric experiments
elastic distortions. This problem can be compensated by a local elastic registering
technique [16]. Each pixel of the reference image is represented by a feature vector
of high dimensionality that stores the colour features of the pixel neighborhood.
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[6] Cano J., Pérez-Cortés J.C., Salvador I., Comparison Of Two Fast Nearest-
Neighbour Search Methods in High-Dimensional Large-Sized Databases, Work-
shop on Statistical Pattern Recognition, 2005.
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Abstract

The main purpose of this work is to provide a qualitative description of the
current research area on OCR carried out by the PRHLT-ITI/DSIC/DISCA
research group. First, different preprocessing and features extraction methods
are briefly described: tangent vectors based methods, local features extraction
and others classical methods. Then, two different approaches for OCR are also
presented: the k -nn method with its fast search version based on KD-Tree and
the mixtures of Bernoulli classifier. Finally, a real implementation is shown at
the end of this work.

Keywords: OCR, HMM, Continuous Distance Transformation, Local Features,
Bernoulli Mixtures, Nearest Neighbours.

1 Introduction

OCR is an active research area in the PRHLT-ITI/DSIC research group. It has
been approached from many points of view. The main purpose of this work is to
provide a general qualitative description of the current research area on OCR carried
out by the group, starting with an explanation of the different methodologies used
for preprocessing and feature extraction and followed by a short description of the
employed classification methodologies. Finally, some implemented OCR applications
are presented in the last section.

∗ Work supported by the Agencia Valenciana de Ciencia y Tecnoloǵıa (AVCiT)” under grant
GRUPOS03/031 and the Spanish project TIRIG (TIC 2003-08496-C)
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2 Preprocessing and features extraction methods

In this section we describe different preprocessing and features extraction methods
used in OCR tasks.

2.1 Preprocessing and features extraction for Bernoulli mixtures

OCR based on Bernoulli mixtures has been used by the PRHLT-ITI/DSIC research
group in different works [13, 20, 21]. In them, OCR is applied to Indian Digits
(figure 1). The dataset used comprises the 10425 digit samples included in the
non-touching part of the Indian digits database provided by CENPARMI [1]. Orig-
inal digit samples are given as binary images of different sizes (minimal bounding
boxes). To obtain properly normalised images, both in size and position, two sim-
ple preprocessing steps were applied. First, each digit image was pasted onto a
square background whose centre was aligned with the digit centre of mass. This
square background was a white image large enough (64× 64) to accommodate most
samples though, in some cases, larger background images were required. Second,
given a size S, each digit image was subsampled into S × S pixels, from which its
corresponding binary vector of dimension D = S2 was built. Figure 1 shows one
preprocessed example of each Indian digit (S = 30).

0 1 2 3 4 5 6 7 8 9

Figure 1: 30 × 30 examples of each Indian digit.

2.2 An off-line HMM-based OCR system for isolated handwritten
lowercase letters

As result of the PRHLT Group’s initial research work on the application of stan-
dard continuous speech recognition (CSR) technology in the Off-line handwriting
recognition area, a (continuous density) hidden Markov models (HMM)-based OCR
prototype-system for isolated handwritten character classification was implemented.
It has been focused specially on finding adequate preprocessing and feature extrac-
tion methods for being used with (one-dimensional) HMM modelling.

A close attention has been paid to the recognition of individual, isolated charac-
ters, mainly for guiding system design when more complex tasks were confronted.
Good results comparable with state-of-the-art results on the set of lowers in the
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NIST Special Database 3 [14] have been reported in [11]. Finally it is also worth to
mention that letter HMM training and recognition processes were both done on the
basis of the well-known and widely available standard Hidden Markov Model Toolkit
(HTK) for CSR [31].

Preprocessing and feature extraction are explained along with a brief description
about how individual characters are modelled using HMMs as it follows.

Given a binary image of a character, the first step of our preprocessing module
removes “specks of dust” (isolated and small connected components of black pixels)
from the image and then fits a minimal bounding box to its remaining black pixels.
The second step performs slant correction on the resulting cropped image using the
method described in [30]. Preprocessing ends with a third step that computes the
vertical density histogram (number of black pixels in each row) and smoothes it by
merging consecutive rows with low density and replicating rows with high density.
This has the effect of reducing the size of ascenders and descenders, which it is
thought to be of help for our HMM-based character modelling approach. Figure 2
illustrates the second and third steps.

Given a preprocessed image, feature extraction transforms it into a sequence of
feature vectors. To do this, the preprocessed image is first divided into a 24-rows
grid of squared cells (a vertical resolution of 1/24 has been chosen after the results
reported in [15]). Then each cell is characterised by the following features: nor-
malised grey level, horizontal grey-level derivative and vertical grey-level derivative.
Columns of cells or frames are processed from left to right and a feature vector is
constructed for each frame by stacking the features computed in its constituent cells
(see fig. 2).

cropped
original

slant
correction

vertical
normalisation

feature
extraction

−−−−−−−−−−→

normalised
grey levels

horizontal
derivatives

vertical
derivatives

Figure 2: Preprocessing and feature extraction example.

Individual characters are modelled by continuous density left-to-right hidden
Markov models (HMM), similar to those used in CSR [19] (see fig. 3). Basically,
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each character HMM is a stochastic finite-state device aimed at modelling the suc-
cession, along the horizontal axis, of (vertical) feature vectors which are extracted
from instances of this character. It is assumed that each HMM state generates fea-
ture vectors following an adequate parametric probabilistic law; typically, a mixture
of Gaussian densities. The required number of densities in the mixture depends,
along with many other factors, on the “vertical variability” typically associated with
each state. This number needs to be empirically tuned in each task. On the other
hand, the number of states that is adequate to model a certain character or charac-
ter set depends on the underlying “horizontal variability”. For instance, to ideally
model a capital “E” character, only two states might be enough (one to model the
vertical bar and the other for the three horizontal strokes), while three states may be
more adequate to model a capital “H” (one for the left vertical bar, another for the
horizontal stroke and the last one for the right vertical bar). The most appropriate
number states for a given task also depends of the amount of training data which is
available to train model parameters. So, the exact number of states to be adopted
needs some empirical tuning in each practical situation. This training process is car-
ried out using a well known instance of the EM algorithm called backward-forward
or Baum-Welch re-estimation [19].
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Figure 3: Example of the structure of a character left-to-right hidden Markov model.

2.3 The continuous distance transformation

Obtaining feature maps from images, where the distance relationships among their
pixels are taken into account is the goal of a well-known technique usually referred
to as Distance Transformation or DT [28]. The Distance Transformation is tradi-
tionally defined as an operation that transforms a binary image consisting of feature
and non-feature pixels into a distance map, where all non-feature pixels have a value
corresponding to the distance (any suitable distance function on the plane) to the
nearest feature pixel [8]. Unfortunately, binarisation is a necessary step in order to
compute the classical Distance Transforms from continuous-valued images, causing
a loss of information.
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A generalisation of the DT, the Continuous Distance Transformation (CDT),
was presented as a technique to compute distance maps from continuous-valued
images [3, 6]. Applicable to gray-level images, the CDT technique avoids binarisation
process and make use of the whole information content of the original range of
representation.

Taking the definition of Distance Transformation as a basis, an item (i, j) of a
“Distance Map to the Nearest White Pixel” holds the distance from pixel (i, j) on
the image to the nearest white pixel. Note that this value can be interpreted as the
number of fringes expanded from (i, j) until the first fringe holding a white pixel is
reached, where a “fringe” is defined as the set of pixels that are at the same distance
of (i, j).

A parallelism between a distance map of binary images and one whose pixel
values are defined in the gray-scale domain [0..MaxBright] implies the replacement
of the “white pixel” concept by the “maximum bright value” and actions as “find
the nearest white pixel” by “accumulate a maximum bright value on an expanding
neighbourhood”. Moreover, the value of an item on the continuous distance map
is a function of the pixel value itself, as well as, of the number of fringes expanded
until an accumulated bright value reaches a threshold according to a certain criteria
of bright value accumulation, which is applied to the pixels belonging to each fringe
analysed. Then, the concept of “distance to the nearest white pixel” is substituted
by the concept of “distance from a pixel to the limit of their area of brightness
saturation”.

Two types of CDT-based maps can be defined: Continuous Distance Map to
Brightness Saturation (CDTB), or generically, Distance Map to Direct Saturation
(ΘD), and Continuous Distance Map to Darkness Saturation (CDTD), or generi-
cally, Distance Map to Reverse Saturation (ΘR), depending on if a maximum value
of bright intensity or a maximum value of reverse bright intensity is accumulated,
respectively. Both maps provide distinct information about a point and its surround-
ing area. In [3, 6], detailed descriptions of these concepts are presented. Given an
image, either a ΘD map or a ΘR map are more or less descriptive depending on
its brightness distribution. Figure 4 shows both CDT maps and both DT maps ob-
tained from a character image. The cost of a CDT map computation is in Ω(m2×n2)
for an image of m × n pixels, but, in practice, it is much lower.

In a vectorial classifier, a number of dissimilarity and metric measures can be
used over a set of extracted features from objects. In that context, several distance
and dissimilarity measures based on the CDT can be used to take advantage of the
full possibilities of the representation obtained. The well-know Minkowski metrics
(Lp-norms) can be computed over either ΘD and/or ΘR maps. Furthermore, the
Continuous Pixel Distances (PDLp) –also named Generalised Pixel Distances–, is a
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Figure 4: On the top, a 40x40 pixels binary digit. In the second line on the left, the
gray-scale image resulting from scaling into 16x16 pixels and, on the right the corresponding
16x16 binarized image. Below the gray-scale image of the ΘD and ΘR maps are shown.
Below the binarized image, their corresponding DT maps are shown. CDT maps show a
wider range of gray values than DT maps because they contain more information.

family of specific CDT-based dissimilarity measures. They are based in the following
concept of similarity between images: two images with values in the gray scale
are more similar if the values of a pixel (i,j) are coincident or, otherwise, their
respective neighbourhoods are similar. Taking into account that both ΘD and ΘR

maps describe the neighbourhood of an image, the following expression computes
the PDLp distances between two continuous-valued images X and Y of m×n pixels
defined in [0..MaxScale]

PDLp(X,Y ) =
m∑

i=1

n∑
j=1

ω(i, j) (Lp(ΘD
X(i, j),ΘD

Y (i, j)) + Lp(ΘR
X(i, j),ΘR

Y (i, j)))

where
ω(i, j) =

|X(i, j) − Y (i, j)|
MaxScale

The weight of the neighbourhood in the former expression can be tuned by the
exponent p, and it is more significant as the differences between maps are higher.
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Scaling character images is very common as a pre-process in OCR systems. The
Continuous Distance Transformation used in conjunction with a k-nn classifier has
been shown to provide good results in the task of handwriting character recogni-
tion [2, 6]. Table 1 shows some results using the SD3 database [16] tested on some
CDT-based measures and the Euclidean distance. In all cases, the results show bet-
ter performances of the CDT-based measures compared to the Euclidean distance.

Table 1: Error rates and confidence intervals (95%) obtained for some CDT-based
measures. The best k value and the best grid are shown.

Distances Grid Lower-case Upper-case Digits
9.83 4.97 0.73ED 8x8 10.67 11.56 5.59 6.26 0.84 0.97
8.30 3.15 0.70L5BD 28x28 9.08 9.91 3.66 4.21 0.81 0.93
7.99 3.09 0.57PDL3 28x28 8.76 9.57 3.60 4.15 0.68 0.79

2.4 Local features

In a classical classifier, each object is represented by a feature vector, and a dis-
crimination rule is applied to classify a test vector that also represents one object.
Local representation, however, implies that each image is scanned to compute many
feature vectors. Each of them could be classified into a different class (for instance
using nearest neighbours), and therefore a decision scheme is required to finally
decide a single class for a test image.

So, preprocessing method must be a quiet different when we use local features.
We used local features in the OCR of digits [22] and is now been used in the OCR
of Indian digits. Many local representations have been proposed. In our works, each
image is represented by several (possibly overlapping) square windows of size w×w,
which correspond to a set of “local appearances” (figure 5).

Figure 5: Example of four local features extracted from an image of an Indian
handwritten digit.

To obtain the local feature vectors from an image, a selection of windows with
highly relevant and discriminative content is needed. Although a number of methods
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exist to detect such windows, most of them are not appropriate for handwritten
images or they are computationally too expensive. In our works, the pixels black
value is used as selection criterion as they are selected in order to determinate
windows centers. For each of the selected pixels, a w2-dimensional vector of grey
values is first obtained in the preprocessed image by application of a w ×w window
around it. The dimension of the resulting vectors is then reduced from w2 to 30 using
Principal Component Analysis (PCA), thus obtaining a compact local representation
of a region of the image. This is illustrated in figure 6.

Figure 6: Feature extraction process.

3 Classification methods

In this section, several works related to OCR classifiers are presented. These works
are based on two different approaches: the k Nearest Neighbours rule and the mix-
tures of Bernoulli classifier.

3.1 k-nearest neighbours

The k Nearest Neighbours (k -nn) Rule is a classical statistical method which offers
consistently good results as well as it shows certain theoretical properties related to
the expected error. The basic k -nn is a memory-based classifier which uses every
stored prototype to be compared to the test observations, hence, it can benefit from
the sample diversity coming from very large training datasets.

3.1.1 Fast and accurate handwritten character recognition using approx-
imate nearest neighbours search on large databases

A number of studies [17, 29], have shown the power of k-nearest neighbour classifiers
(k-nn) using large databases for character recognition. In those works, the error rate
is found to decrease consistently as the size of the database increases. Unfortunately,
a large database implies large search times if an exhaustive search algorithm is used.
However, fast approximate nearest neighbours search algorithms on large databases
are shown to provide high accuracies, similar to those of exact nearest neighbour
search. Most of them are based on tree structures [7, 12]. Other ones are based on
projections and space filling curves (SPFC) [18, 23, 24].
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Figure 7: Recognition at zero percent rejection (left), and number of searches per
second (right) for two different values of k, an approximate search parameter ε = 1.5
and increasing training set sizes. Throughputs measured on a PentiumII - 450Mhz
running Linux 2.2.9 not including preprocessing time of the test character.

In our work [26], experiments using fast and approximate SPFC and kd-trees
algorithms were made over the SD3 database [16]. Such a experiments demon-
strated that when applied to an OCR task, character recognition on large databases
can be reached at a fraction of the computational cost from the exhaustive search.
The improvements that can be expected using kd-trees search from training sets of
increasing size, in terms of results and recognition speeds, are shown in Figure 7.

Given the slow increase of the search times incurred when the database grows,
an interesting approach to improve the accuracy, keeping at the same time high
recognition speeds, was to insert new prototypes into the training set [17]. Defor-
mations based on slant were applied to the training characters and inserted in a new
larger training set. The recognition rate using 4 slant angles to obtain a training set
of 1,000,965 digits (including the 200,193 original ones) improved to 99.43%, from
99.21%, thus cutting the error rate by more than one fourth, in the test on SD3
digits [16], with k=4 and ε = 1.5. The search time increased from 2.4 ms/char to
4.5 ms/char. The error rates and search times presented in [26] prove that k-nn can
be a practical technique for a character recognition task.

3.1.2 Training set expansion in handwritten character recognition

Approximate nearest neighbours search in large databases can be successfully used
in an OCR task, and significant performance improvements were obtained by simply
increasing the size of the training set [26]. In our work [9], a process of expansion of
the training set by synthetic generation of handwritten uppercase letters via defor-
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mations of natural images is tested in combination with an approximate k−Nearest
Neighbour (k−nn) classifier.

Four simple kinds of image transformations were tested (Figure 8): slant and
shrink, to cope with geometric distortions of the writing, and erosion and dilation to
account for different writing implements, acquisition conditions, etc. The transfor-
mations were first tested separately and then the one offering the best results (slant)
was applied first, expanding the training set so that the rest of transformations were
incrementally applied to the original plus the slanted characters.

Figure 8: Families of transformations tested

The accuracy improvement achieved by artificially expanding a core database of
images is comparable to using extra real data. Another experiment was carried out,
where a large locally acquired real database was used, allowing increasingly large
training sets up to 674265 images, equivalent to the size of the previous artificially
expanded database.
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Figure 9: Comparison of error rates of a k−nn classifier for increasingly large training
sets composed of real-only and real+synthetic images from the local database.

A core set of images from the local database was randomly selected. On the
one hand, this core set was made larger by adding new real images from the rest
of the local database, and on the other hand, the proposed expansion of the core
using deformations was applied. In Figure 9, the results of this experiment on the
local database using a k−nn classifier are shown. A recognition rate improvement
is achieved in the classification of both real upper-case letters database and local
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database (synthetically increased). However, this training set size increase does not
seriously affect the processing time requirements of the recognition method. The
results suggest that both approaches provide significant improvements.

3.1.3 Fast handwritten recognition using continuous distance transfor-
mation

The Continuous Distance Transformation used in conjunction with a k-nn classifier
has been shown to provide good results in the task of character handwriting recog-
nition [2]. Unfortunately, efficient techniques such as kd-tree search methods cannot
be directly used in the case of certain dissimilarity measures like the CDT-based
distance functions.

In our work [5], the problem of the computational complexity reduction asso-
ciated to a k-nn classifier using complex distance functions was approached in a
simple way: In a first step, fast search using kd-trees is applied to a test observation
in order to get a number k′ of nearest prototypes. Secondly, an exhaustive search
of the k nearest neighbours, k < k′, among the k′ pre-selected prototypes using
specific features and distance functions is carried out to assess better performances.
Notice that the space of features can be different each search. The computational
cost of this combined methodology depends on k′ and, in practice, is significantly
lower than that of exhaustive search over the whole training set.

Table 2: Error rates of the three methods for k′=100, k=3, and ε=1.5 using the
L6D, L9BD and PDL5 pre-selected CDT distance functions

Method \ Distance L6D L9BD PDL5
Exhaustive CDT 4.17 3.93 3.69 (287 ms/char)

kd-tree (CDTD) & CDT 4.17 3.93 3.65 (7.78 ms/char)
kd-tree (image) 6.05 (3.69 ms/char)
kd-tree (CDTD) 4.99 (3.17 ms/char)

For handwritten character classification we tested some of the CDT-based dis-
tance functions. Table 2 shows the experimental results obtained using the SD3
upper-case database [16] for: 1st) exhaustive k -nn search using CDT distance func-
tions, 2nd) the proposed methodology, 3rd) approximate search in kd-tree over the
pixel feature space, and 4th) approximate search in kd-tree over the CDTD map
feature space respectively. The recognition rates achieved have no significant dif-
ferences with those found in an exhaustive k -nn classification using CDT distance
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Figure 10: Stages of the proposed system.

functions, with a very important temporal cost reduction.

3.1.4 Rejection strategies and confidence measures for a k−nn classifier
in an OCR task

In handwritten character recognition, the rejection of extraneous patterns, like image
noise, strokes or corrections, can improve significantly the practical usefulness of
a system. Confidence measures can be defined from the a posteriori probability
provided by the k-nn classifier. However, a completely unrecognisable symbol, a
crossing-out or a very noisy pattern can be classified with a high confidence when
all or most of its neighbours are from the same class, even if the distances involved are
unusually large. In our work [4], a combination of two confidence measures defined
for a k-nearest neighbours classifier was proposed to reject such outlier patterns.

Figure 10 shows the proposed system which use a heuristic pre-processing step
previous to the classification, where some clearly noisy patterns are detected. How-
ever, the general problem of detecting those patterns has to be addressed in the
classification phase. Thus, we defined a procedure to obtain a function g(x) which
allows to reject a pattern y having a g(y) value over a pre-fixed distance threshold
Td. Then, the non-rejected remaining ones are classified into a regular class using a
standard ambiguity threshold Ta based on the a posteriori probability provided by
the k-nn classifier.

Our approach is based on considering the need of a confidence measure repre-
senting the probability that a pattern is a character of any class. A natural way to
address this problem is to estimate the probability under the p.d.f. of all classes,
p̂(x) =

∑
i p̂(x | ωi) [27] and the direct sum of the distances to the k nearest neigh-

bours of x, g′(x), can be regarded as an “inverse confidence measure” related to that
estimation:

g′(x) =
k∑

j=1

d(x, yj)

Pattern Recognition : Progress, Directions and Applications 117



Obviously, this function is not a p.d.f. and, from a practical viewpoint, the fact
that the range of values obtained is not bounded, but depends on the magnitudes of
the distances, is a significant problem. Establishing a consistent distance threshold
Td for different training sets, space dimensionalities or distance measures becomes
difficult and inconvenient. To normalise g′(x), a suitable reference has to be used.
Thus, the distribution function of the values of g′(x), for x in a representative sample
of observations is proposed:

g(x) = F
(
g′(x)

)
Finally, we implemented an estimation of this distribution function with an ac-

cumulated histogram of the values of g′(x) from the prototypes in the training set,
using a leaving-one-out technique. Thus, in the test phase, the rule g(y) ≥ Td is
applied to reject outlier patterns. Typical values for Td should be: slightly below
1 when the existence of outliers in the training set is known or suspected, and 1
or slightly over 1 when the training set is known to be clean and representative of
the whole population. In Table 3, the number of characters and abnormal patterns
rejected at the pre-process and at the distance rejection stage are shown.

Table 3: Patterns rejected at pre-processing and in the distance rejection phase.

Initial Pre-process Td = 0.97
Letters 6273 4 (0.06%) 207 (3.29%)
Abnormal 824 34 (4.13%) 462 (56.1%)

Experiments to compare the performances of a system with ambiguity rejection
but no distance rejection option (SYS-A) and a system using both rejection tests
(SYS-B) were made. The systems were tested using different percentages of abnor-
mal patterns along with regular characters. The results showed better for SYS-B
when the number of abnormal patterns in the test set is higher than 5% or 10% at
high rejection rates, common in practice, at the expense of a small loss of perfor-
mance at low rejection rates when the system operates on “clean” test sets.

3.2 Bernoulli mixtures

Bernoulli mixtures is other classification method used in OCR task [13, 20, 21].
Mixture modelling is a popular approach for density estimation in both supervised
and unsupervised pattern classification. On one hand, mixtures are flexible enough
for finding an appropriate tradeoff between model complexity and the amount of
training data available. Usually, model complexity is controlled by varying the
number of mixture components while keeping the same (often simple) parametric
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form for all components. On the other hand, maximum likelihood estimation of
mixture parameters can be reliably accomplished by the well-known Expectation-
Maximisation (EM) algorithm.

A (finite) mixture model consists of a number of mixture components, I. It
generates a D-dimensional sample �x = (x1, . . . , xD)t by first selecting the ith com-
ponent with prior probability p(i), and then generating �x in accordance with the ith
component-conditional probability (density) function p(�x | i). The priors must satisfy
the constraints:

I∑
i=1

p(i) = 1 and p(i) ≥ 0 (i = 1, . . . , I). (1)

The posterior probability of �x being actually generated by the ith component can be
calculated via the Bayes’ rule as

p(i | �x) =
p(i) p(�x | i)

p(�x)
(2)

where

p(�x) =
I∑

i=1

p(i) p(�x | i) (3)

is the (unconditional) mixture probability (density) function. A Bernoulli mixture
model is a particular case of (3) in which each component i has a D-dimensional
Bernoulli probability function governed by its own vector of parameters or prototype
�pi = (pi1, . . . , piD)t ∈ [0, 1]D ,

p(�x | i) =
D∏

d=1

pxd

id (1 − pid)1−xd (4)

Consider an arbitrary component p(�x | i). It identifies a certain subclass of binary
vectors “resembling” its parameter vector or prototype �pi. In fact, each pid is the
probability of bit xd to be one, whereas 1−pid is the opposite. Equation (4) is just the
product of independent, unidimensional Bernoulli probability functions. Therefore,
a single multivariate Bernoulli component can not capture any kind of dependencies
or correlations between individual bits. As with other types of mixtures, this is
implicitly done by mixing several components in the right proportions.

Also as with other types of mixtures, Bernoulli mixtures can be used as class-
conditional models in supervised classification tasks. Let C denote the number of
supervised classes. Assume that, for each supervised class c, we know its prior
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p(c) and its class-conditional probability function p(�x | c), which is a mixture of Ic

Bernoulli components,

p(�x | c) =
Ic∑

i=1

p(i | c) p(�x | c, i) (5)

Then, the optimal Bayes decision rule is to assign each pattern vector �x to a class
c∗(�x) giving maximum a posteriori probability:

c∗(�x) = arg max
c

p(c | �x) (6)

= arg max
c

(
p(c) p(�x | c)

)
(7)

= arg max
c

(
log p(c) + log p(�x | c)

)
(8)

= arg max
c

(
log p(c) + log

Ic∑
i=1

p(i | c)p(�x | c, i)
)

(9)

As it is said above. maximum likelihood estimation of mixture parameters can be
reliably accomplished by the well-known Expectation-Maximisation (EM) algorithm.

Let X = {�x1, . . . , �xN} be a set of samples available to learn a Bernoulli mixture
model. This is a statistical parameter estimation problem since the mixture is a
probability function of known functional form, and all that is unknown is a parameter
vector including the priors and component prototypes:

�Θ = (p(1), . . . , p(I), �p1, . . . , �pI)t. (10)

Here we are excluding the number of components from the estimation problem, as
it is a crucial parameter for controlling model complexit. Following the maximum
likelihood principle, the best parameter values maximise the log-likelihood function
of �Θ,

L(�Θ |X) =
N∑

n=1

log

(
I∑

i=1

p(i) p(�xn | i)

)
. (11)

In order to find these optimal values, it is useful to think of each sample �xn as
an incomplete component-labelled sample, which can be completed by an indicator
vector �zn = (zn1, . . . , znI)t with 1 in the position corresponding to the component
generating �xn and zeros elsewhere. In doing so, a complete version of the log-
likelihood function (11) can be stated as

LC(�Θ|X,Z) =
N∑

n=1

I∑
i=1

zni (log p(i) + log p(�xn|i)) , (12)
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where Z = {�z1, . . . , �zN} is the so-called missing data.
The form of the log-likelihood function given in (12) is generally preferred because

it makes available the well-known EM optimisation algorithm (for finite mixtures).
This algorithm proceeds iteratively in two steps. The E(xpectation) step computes
the expected value of the missing data given the incomplete data and the current pa-
rameters. The M(aximisation) step finds the parameter values which maximise (12),
on the basis of the missing data estimated in the E step. In our case, the E step
replaces each zni by the posterior probability of �xn being actually generated by the
ith component,

zni =
p(i) p(�xn | i)∑I

i′=1 p(i′) p(�xn | i′)

(
n = 1, . . . , N
i = 1, . . . , I

)
, (13)

while the M step finds the maximum likelihood estimates for the priors,

p(i) =
1
N

N∑
n=1

zni (i = 1, . . . , I), (14)

and the component prototypes,

�pi =
1∑N

n=1 zni

N∑
n=1

zni�xn (i = 1, . . . , I). (15)

To start the EM algorithm, initial values for the parameters are required. To do
this, it is recommended to avoid “pathological” points in the parameter space such as
those touching parameter boundaries and those in which the same prototype is used
for all components. Provided that a non-pathological starting point is used, each
iteration is guaranteed not to decrease the log-likelihood function and the algorithm
is guaranteed to converge to a proper stationary point (local maximum). Also, for
the sake of robustness, it is important to introduce some sort of model smoothing.

Although most research in mixture modelling has focused on mixtures for con-
tinuous data, there are many pattern recognition tasks for which binary or discrete
mixture models are better suited. For instance, Bernoulli mixtures has been used in
the OCR of Indian digits [13, 20, 21] (see figure 1).

4 OCR post-proces

In [25], stochastic error-correcting parsing is proposed as a powerful and flexible
method to post-process the results of an optical character recogniser (OCR). Deter-
ministic and non-deterministic approaches are possible under the proposed setting.
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The basic units of the model can be words or complete sentences, and the lexicons
or the language databases can be simple enumerations or may convey probabilistic
information from the application domain.

5 A real OCR application: license plates recognition

A robust method for plate segmentation in a License Plate Recognition (LPR) sys-
tem is presented in [10]. It is designed to work in a wide range of acquisition condi-
tions, including unrestricted scene environments, light, perspective and camera-to-
car distance. Although a novel text-region segmentation technique was applied to
a very specific problem, it is extensible to more general contexts, like difficult text
segmentation tasks dealing with natural images.

In this task, due the nature of images (unrestricted context), a segmentation
method capable of generating various hypothesis for each image was implemented in
order to prevent the loss of any possible license plate region. Accordingly, a subse-
quent recognition phase that filters the final results without discarding beforehand
any reasonable segmentation hypothesis was designed to obtain the plate identifier.

Figure 11: Example image of the test set for the license plate recognition task

The overall process of an image provided de user with a set of plates identifiers
and corresponding confidence measures, as shown in the example, 12. Each one of
the hypotheses could come from differnet areas of the original image (11) or from
different image scales.
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[13] José Garćıa-Hernández, Vicent Alabau, Alfons Juan and Enrique Vidal,
Bernoulli mixture-based classification, Proc. of the LEARNING04, 2004

[14] M. D. Garris and R. A. Wilkinson. Handwritten segmented characters
database. Technical Report Special Database 3, NIST, February 1992.
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Abstract

The nearest neighbour (NN) and k-nearest neighbour (k-NN) classification
rules have been widely used in Pattern Recognition due to its simplicity and
good behaviour. Exhaustive nearest neighbour search may become unpractical
when facing large training sets, high dimensional data or expensive dissimilarity
measures (distances). During the last years a lot of fast NN search algorithms
have been developed to overcome those problems, and many of them are based
on traversing a data structure (usually a tree) testing several candidates until
the nearest neighbour is found.

When these algorithms are extended to find the k nearest neighbours, the
classification time increases with the value of k. In this paper we propose a new
classification rule that makes use of the prototypes that are selected by these
algorithms in a 1-NN search as candidates to nearest neighbour. To illustrate
the behaviour of this rule, several fast and widely known NN search algorithms
have been extended with it, obtaining classification results similar to those of
a k-NN (k > 1) classifier without the extra computational overhead. Also,
previous work on approximate NN search for vector spaces has been extended
to algorithms suitable for general metric spaces, and has been combined with
the new classification rule.

Keywords Nearest Neighbour, Classification Rule, Approximate Search

1 Introduction

Given a set P of prototypes, where each p ∈ P belongs to one of a finite set of
classes C, the nearest neighbour (NN) rule classifies an unknown sample into the
class of its nearest neighbour in P according to some similarity measure (a distance).
Despite its simplicity, the classification accuracy is usually enough for many Pattern
Recognition tasks. However, some tasks may require lower classification error rates,
and usually the k-NN rule [1] is used as a generalisation of the NN rule. The k-NN
classification rule is also simple: find the k nearest neighbours of the sample and
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dnn := ∞
do until the training set P is empty

pi := argminp∈P Aprox(x, p) // Approximation
(a) d := d(x, p)

if d < dnn then

nn := p ; dnn := d // Update the current NN
(b) P := P − { q : q /∈ E(x, dnn) } // Elimination

endif

enddo

Figure 1: Approximation and elimination framework.

classify it by voting with the classes of the k nearest neighbours, i.e., assign the
majority class to the sample.

Although initially used in Pattern Recognition, the NN rule has been also of
interest for other fields such as data mining and information retrieval, which usu-
ally involves searching in very large databases and facing with high dimensionality
data. Whenever the classification task requires large training sets, expensive dis-
tance measures or high dimensionality, the simple exhaustive search for the NN
becomes unpractical. To overcome some of these problems, a large number of fast
NN search algorithms [2, 3, 4, 5, 6, 7] have been developed. Many of these algo-
rithms are suitable for any kind of prototype representation (vectors, strings, trees,
. . .) which allows to define a distance that holds the properties of a metric, that
is, they do not assume that the prototype is a vector and thus they do not make
use of the coordinates (see the work by Chávez et al. [8] for a review on NN search
algorithms in metric spaces).

Most of these fast NN search algorithms may be easily extended to find the k-
NN. However, the requirement of finding exactly the k-NN involves higher computing
effort, and that effort increases with the value of k.

Several search algorithms can fit into an approximation and elimination frame-
work [9], that can be formulated as in figure 1. The search process is seen as an
iterative process: using an approximation function, a candidate to nearest neigh-
bour is selected and its distance to the sample is computed. Then, if it is closer to
the sample than the current NN, it becomes the current NN and the training set is
pruned so that all the prototypes that are outside an hypersphere centered in the
sample with radius dnn (the distance to the current NN) are safely eliminated from
the training set. The process continues until the training set is empty, and then the
current NN will be the NN.
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In this paper we propose a new classification rule that makes use of the prototypes
that are selected in a standard 1-NN search as candidates to nearest neighbour by
fast NN search algorithms. To illustrate the behaviour of this rule, several fast
and widely known NN search algorithms have been extended with it, obtaining
classification results similar to those of a k-NN (k > 1) classifier without the extra
computational overhead. Also, previous work on approximate NN search for vector
spaces has been extended to algorithms suitable for general metric spaces, and has
been combined with the new classification rule.

The paper is structured as follows: the next section briefly describes the new
classification rule, which is based on the approximation and elimination framework.
Then, the approximate NN search for some (metric spaces) algorithms is outlined.
The experiments section will show the results of the new rule when applied to various
NN search algorithms in experiments with synthetic and real data, and also the
results of combining the rule with approximate NN search. Finally, we will conclude
and outline some future work.

2 The k-NSN classification rule

Many approximation and elimination search algorithms are based on the following
idea: during preprocessing, a data structure is built to allow pruning of the training
set. Then, during classification, a candidate to nearest neighbour is selected and
stored, and its distance to the sample is computed. This distance is then used
to prune the training set (using the data structure) and maybe to select a new
candidate. This process ends when all the training set has been pruned or selected.
Extending such an algorithm to find the k-NN is usually simple: each time a distance
is computed (step (a) in figure 1), it is stored (along with the prototype) in a sorted
array that holds the k-NN found so far. Then, the distance used to prune the training
set is the distance to the kth nearest neighbour found so far, instead of the distance
to the current NN (dnn in step (b) of figure 1). This involves less pruning and
more distances to compute, which derives in an additional computational overhead,
always dependent on the value of k.

In this paper we propose a simple but powerful extension for any approximation
and elimination based NN search algorithm: when looking for the nearest neighbour,
each prototype selected and its distance to the sample are stored in a sorted array,
as for the k-NN search. However, the distance used to prune the training set is dnn,
so that the number of distances (and thus the computational effort) is the same as
for a standard NN search. The prototypes stored are called the k nearest selected
neighbours (k-NSN), and they are not exactly the k-NN. When the search finishes,
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the sample is classified by majority voting using these neighbours (which include the
nearest neighbour), as in the k-NN rule.

This technique can be considered a new classification rule (the k-NSN rule)
which requires very little computational effort over a NN search (storing the k near-
est selected neighbours)1, and, as we shall see in a following section, it achieves
classification results very similar to those of the k-NN rule. Also, if this rule is
applied to an exhaustive NN search it yields the k-NN rule. The rule raises up as an
extension of previous work on the LAESA algorithm [10, 11]. Given that classifica-
tion time does not (highly) depend on the value of k, one may increase k as desired
to improve classification rates; however, as also happens with the k-NN rule, from
a certain value of k the rates start to worsen.

3 Approximate NN search in metric spaces

There are a number of real tasks for which finding exactly the NN (even using a fast
NN search algorithm) may become too slow; a number of approximate NN search
algorithms [12, 13, 14, 15] have been proposed to face these tasks, yielding slightly
worse classification rates but obtaining much lower classification times.

However, these algorithms are usually based on vector spaces of representation,
and this feature limits its range of application in Pattern Recognition tasks. More-
over, in some real tasks where a string or tree represents an object (and thus usually
the string or tree edit distance is used), classification times are much higher than in
vector space tasks. In this work we have extended some ideas from previous works
on approximate NN search in vector spaces to algorithms suitable for general metric
spaces: Fukunaga and Narendra’s [2], AESA [5], LAESA [10] and TLAESA [16].

In a widely known implementation of approximate NN search by Arya and Mount
[12], a priority queue is used in a kd-tree to store the nodes which the search algo-
rithm has still to visit. The key for the queue is some kind of lower bound of the
distance from the node to the sample, and the node with the minimum key is the
first to be extracted from the queue.

We have tested a similar idea with the Fukunaga and Narendra’s algorithm,
and with TLAESA (both tree-based algorithms): when a non-leaf node is visited,
its children are stored in the queue using a key, m, which is a lower bound of the

1The simplest implementation is to insert the new pair distance/prototype in a sorted array of k

pairs, if the distance is lower than the last one in the array. The extra time complexity over the NN
search is O(ck), where c is the number of computed distances. Although it is possible to reduce this
time complexity with a heap, this overhead is almost negligible when compared to the overhead of
computing c distances.
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distance of the node to the sample2. In each step of the algorithm, the node with
the minimum key m is extracted from the queue, and the algorithm finishes when
the following condition holds:

m > dnn

where dnn is the distance of the current nearest neighbour to the sample. For an
approximate search, the condition has been changed to:

m · (1 + ε) > dnn

where ε is a parameter to tune the search: the higher the value of ε, the faster the
search, but the higher the error rate. The optimum value of ε is a trade-off between
classification time and allowable increase in the error rate, and should be determined
for each classification task.

In the Fukunaga and Narendra’s algorithm, any non-leaf node p has a representa-
tive Mp and a radius rp. When a node is visited, the distances of the representatives
of its children to the sample are computed and stored. Given a child p, the expres-
sion:

d(x,Mp) − Rp

is a (pessimistic) lower bound of the actual distance of the prototypes contained in
p to the sample. Thus, if the child is not eliminated by the elimination condition
of the algorithm (from which is derived the expression for the lower bound), it is
stored in the queue along with the lower bound as the key.

The TLAESA algorithm does not compute any distances when visiting a non-
leaf node; instead, it uses a lower bound of the distance from the representative Mp

to the sample, G[Mp], which is computed in the following way:

G[Mp] = maxb∈B |d(x, b) − d(b,Mp)|

where B is a subset of prototypes called base prototypes (see [10, 16] for the details).
The distances from each b ∈ B to the sample are computed in the first step of the
classification phase, and the distances d(b,Mp) are computed (and stored) prior to
classification, in a preprocessing step. The extension of this algorithm for approxi-
mate NN search has been done in a way very similar to that in the Fukunaga and
Narendra’s algorithm. The key for each node, which is also a lower bound of the
distance of all the prototypes in the node to the sample, is:

G[Mp] − Rp

2In the work by Arya and Mount, only the unvisited child (in a binary tree like the kd-tree) is
stored in the queue.
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so that the lower bound G[Mp] is used instead of d(x,Mp).

The AESA and LAESA algorithms are not based on trees, and thus a different
scheme has been used. Both algorithms also compute a lower bound of the distance of
each prototype to the sample; in the case of LAESA, the lower bound is computed
exactly as in the TLAESA algorithm (in fact, the TLAESA algorithm is derived
from the LAESA algorithm). In the AESA algorithm, a lower bound of the distance
is also computed, but in a slightly different way (as if all the prototypes were base
prototypes). In each step of the search phase of the AESA or LAESA the algorithm,
the prototype p whose lower bound G[p] is the minimum is selected as a candidate
to NN; whenever

G[p] > dnn

the algorithm finishes. For approximate NN search, this condition has to be changed
into this one:

G[p] · (1 + ε) > dnn

No further changes are needed in both algorithms. This kind of approximate search
with these two algorithms is very similar to the search using a certain looseness [17].

4 Experiments with the k-NSN rule

Several series of experiments have been performed in order to test the application
of the k-NSN rule to various fast NN search algorithms (see table 1). All these
algorithms fit in an approximation and elimination framework, and all are suited
for general metric spaces except kd-tree, which requires point coordinates. The al-
gorithms of AESA family (AESA, LAESA, and TLAESA) focus on reducing the
number of distance computations, thus are best suitable for expensive distances.
The vp-tree and GNAT were developed to face large training sets and/or high di-
mensionality of data, and thus the number of distance computations is important
but it is not its main goal.

Two sets of experiments have been performed: first, a set of synthetic data
experiments to test the performance of the rule in a widely known environment.
Second, several tests have been performed with a real data task, human chromosome
classification. In both cases the main goal was to study the error rates of these
algorithms using the k-NSN rule and to compare them with the k-NN error rates.

4.1 Experiments with synthetic data

For these experiments we have generated Gaussian data from 8 classes of dimensions
10 and 20 using the algorithm for generating clustered data in [18]. Tests have been

Pattern Recognition : Progress, Directions and Applications 131



Algorithm Author(s)

kd-tree Friedman et al.[3]
FN75 Fukunaga and Narendra [2]
vp-tree Yianilos [4]
AESA Vidal [5]
LAESA Micó et al. [10]
TLAESA Micó et al. [16]
GNAT Brin [6]

Table 1: Fast NN search algorithms which have been extended with the k-NSN rule.
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Figure 2: Comparison between k-NN and k-NSN classifiers, with synthetic data
of dimensions 10 and 20. The error bars are plotted only for the k-NN rule and
correspond to a 95% confidence interval.

performed using 10 differents pairs of training and test sets, with 4096 and 1024
prototypes respectively. The plots compare the error rate of the k-NSN and k-NN
rules as the value of k increases (figure 2). These results show that k-NSN and
k-NN error rates are very similar (and are almost the same for dimension 20), and
are better than those of an NN classifier.

Although the definition of the k-NSN rule assures that the number of distance
computations remains the same as in the NN rule, an experiment has been developed
to verify it and also to show that in the k-NN rule the number of distances increase
with the value of k. Figure 3 shows the results for the Fukunaga and Narendra’s
algorithm, named FN75 in the plots.3

3The results with all the other algorithms are similar and are not showed for brevity.
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Figure 3: Average distance computations of k-NSN and k-NN rules using the Fuku-
naga and Narendra’s algorithm (FN75), with synthetic data of dimensions 10 and
20.

4.2 Experiments with real data

The real data experiments have been developed for a human chromosome classifi-
cation task [19, 20, 21]. The chromosome database contains 4400 samples coded as
strings, and the edit or Levenshtein distance [22] has been used for this task; the
kd-tree makes use of the coordinates of the prototypes, so it has not been tested
with this database. The database is splitted into two sets of 2200 samples each, and
two experiments have been performed using one of them for training and the other
one for test. Figure 4 shows the average error rates of k-NN and k-NSN classifiers
as the value of k increases. There is a parameter for LAESA and TLAESA (see
[10, 16] for more details), the number of base prototypes, which has been set to 40.

The average number of distance computations and classification times are plotted
in figures 5 and 6. Each individual plot compares k-NN and k-NSN values as the
value of k increases. The results confirm that the number of distance computations
and the average classification time per test sample of the k-NSN rule does not depend
on the value of k; also, the plots show the main advantage of the k-NSN rule over the
k-NN rule: whereas in the k-NN rule the time performance worses as the value of k
increases, the k-NSN rule maintains the same time as the NN rule, while obtaining
almost the same error rates than the k-NN rule.

4.3 How many of the k-NSN are among the k-NN?

The k-NSN rule obtains error rates very close to those of the k-NN, and one may
think that this is due to the fact that many of the k-NSN are in fact among the
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Figure 4: Error rate of k-NN and k-NSN rules in chromosome classification.

k-NN. Another possibility is that the k-NSN, even not matching exactly with the
k-NN, are near at the same distance to the sample.

In order to study this question we have developed two experiments: in the first
one, using synthetic data from varying dimensions (from 5 to 50) and taking two
measures: the percentage of matching, that is, how many of the k-NSN are among
the k-NN, and the relation between the distance of the last k-NSN and the last
k-NN. The experiment has been repeated with 10 different pairs of training and
test sets of 4096 and 1024 prototypes respectively. Figures 7 and 8 show a plot
and a table with the results, which show that when dimension increases both the
percentage of matching and the relation get close to the optimum (100% and 1).
This is why the k-NSN error rates are almost the same as the k-NN rates when data
dimension increases.

Our second experiment on this question was far more ambitious. We thought
that if the percentage of matching clearly closes or reaches 100% when increasing
the training set size, we could state that, in the limit (when the training set size
closes infinite), the k-NSN match exactly the k-NN, and thus the k-NSN rule has
the same statistical properties as the k-NN rule, i.e., that its error rate is bounded
by as much 2 times the Bayes error [23]. The second experiment tries to see if this
hypothesis holds. In this case, the training set size was varying from 1024 to 65536,
with dimension 10, and the test set had 1024 prototypes. The results are plotted in
figure 9, and they seem to prove that our hypothesis was not true.
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Figure 5: Comparison between k-NN and k-NSN average distance computations in
the chromosome classification task.
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Figure 6: Comparison between k-NN and k-NSN average classification time per
sample in the chromosome classification task.
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Dim LAESA TLAESA AESA GNAT FN75 kd-tree vp-tree

5 22.26 37.13 32.66 76.91 85.71 84.94 95.00
10 74.09 83.13 82.61 96.55 98.55 98.64 99.69
20 97.61 98.03 99.78 99.98 100 100 100
30 98.91 99.04 100 100 100 100 100
40 99.07 99.19 100 100 100 100 100
50 99.15 99.26 100 100 100 100 100

Figure 7: Percentage of the k-NSN that are among the k-NN, for synthetic data of
various dimensions.
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Dim LAESA TLAESA AESA GNAT FN75 kd-tree vp-tree

5 1.21 1.49 2.56 1.09 1.04 1.06 1.02
10 1.05 1.04 1.09 1.01 1.00 1.00 1.00
20 1.00 1.00 1.00 1 1 1 1
30 1.00 1.00 1 1 1 1 1
40 1.00 1 1 1 1 1 1
50 1 1 1 1 1 1 1

Figure 8: Relation between the distance to the sample of the kth NSN and the
distance of the kth NN, for synthetic data of various dimensions. The value 1.00
indicates that is slightly greater than 1, but not exactly 1.
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5 Experiments with approximate NN search

The goal of approximate NN search is to reduce classification time, maybe slightly
increasing error rates. In order to test the approach proposed in section 3, several
experiments with both synthetic and real data have been developed. For the syn-
thetic data, the objective was to compare the error rates and distance computations
of the algorithms for general metric spaces with the algorithm by Arya et al. [12],
in whose ideas we inspired to develop our technique. In the case of real data tasks,
we have developed experiments with the chromosome classification task, using the
string edit distance.

5.1 Experiments with synthetic data

The implementation the Arya and Mount algorithm was taken from the ANN soft-
ware package [24], and the experiment was developed with dimension 10 data, using
4096 prototypes for training and 1024 for test. As in previous experiments, 10 dif-
ferent pairs of train/test sets were used. The value of k was set to 25, and in both
cases the classification rule was the k-NN rule. Figure 10 plots the error rates and
the distances computed by all the algorithms with increasing value for ε. The re-
sults show that ANN error rates are only beaten by the Fukunaga and Narendra’s
algorithm, but it computes a higher number of distances; however, the ANN pack-
age uses kd-trees, which compute a high number of partial distances (which have
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Figure 10: Comparison of error rates (left) and distances computed (right) for the
ANN, Fukunaga and Narendra’s algorithm, AESA, LAESA and TLAESA.

not been accounted in this experiment). The AESA family algorithms seem to be
competitive only for very low values of ε, as its error rates increase very quickly with
the value of ε.

5.2 Experiments with real data

Approximate NN search is specially indicated when the distance is very time con-
suming, as in the case of the string edit distance in the chromosome classification
task mentioned before. Figure 11 plots the results for a simple 1-NN search using
various values for ε; dotted lines represent error rates, whereas non-dotted lines rep-
resent average classification time per sample. As can be appreciated in the figure,
the Fukunaga and Narendra’s algorithm seems to be the best if we exclude the AESA
algorithm, that has a quadratic spatial complexity that limits its applicability. The
LAESA and TLAESA results are almost equal due to the fact that both use the
same lower bound of the distance from a prototype to the sample.

For the chromosome task the optimum value of k is 11 (see figure 4), and thus
we tested the approximate search with k = 11 on the Fukunaga and Narendra’s al-
gorithm, using both the k-NN and k-NSN rules. The results are plotted in figure 12,
and show that using approximate search in combination with the k-NSN rule pro-
duces a lower classification time, but with an error rate that is slightly higher than
k-NN rate. The important point is that the behaviour of the k-NSN rule remains
the same with approximate search than with standard search.
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mosome classification task, using approximate NN search.
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Figure 12: Error rates (lines with points) and classification times per sample (lines
without points) in the chromosome task, with the Fukunaga and Narendra’s algo-
rithm using both the k-NSN and the k-NN rules, for k = 11.
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6 Conclusions and future work

A new NN based classification rule (the k-NSN rule) has been developed and tested
with various well known fast NN search algorithms, which fit into the approximation
and elimination framework: kd-tree, Fukunaga and Narendra’s, vp-tree, GNAT. The
rule has also been tested with the algorithms of AESA family, which also fit in the
approximation and elimination framework.

The experiments show that classification results similar to those of the k-NN
rule are obtained using this rule with very little extra computational effort with
respect to a NN classifier. Whenever a fast approximation and elimination NN
search algorithm is applicable, it may be easily modified to classify using the k-
NSN rule and thus it may obtain error rates lower than those of NN, without the
extra overhead of searching for the k-NN. Moreover, the time performance of k-NSN
classifiers does not depend on the value of k, and the error rates decrease (and get
closer to those of the k-NN rule) as the dimensionality increases. The k-NSN rule
may be an alternative for the k-NN rule when classification time is an important
question in a classification task; also, it may be employed to determine the optimum
value for k in the design of a classifier, even if the k-NN rule is finally chosen.

In addition to this rule, previous work on approximate NN search for vector
spaces has been extended to algorithms suitable for general metric spaces, and it
has been combined with the k-NSN rule, yielding very interesting results for real
tasks.

There is still a lot of work to do to explore the possibilities and range of appli-
cation of the k-NSN rule and approximate NN search. As for the future, we plan
to:

• study the evolution of k-NSN error rates as the value of k become higher than
those tested in this work, and compare them with k-NN,

• test the performance of the k-NSN rule as the dimensionality or the number
of classes increase, and

• apply the k-NSN rule to other approximation-elimination NN search algo-
rithms.

• extend approximate NN search to other algorithms not based on vector spaces,
and study its performance in combination with the k-NSN rule.
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Abstract

The main purpose of this work is to provide a qualitative description of
the current research area on Continuous Handwritten Text Recognition for
both off-line and on-line cases, carried out by the Pattern Recognition and
Human Language Technology (PRHLT) group of the “Instituto Tecnológico de
Informática”. A general overview of a handwriting recognition system is given,
focussing specially on architectonic scheme. According to the case type (off-line
and on-line), different preprocessing and feature extraction methods are briefly
explained. Also, a short description about how the different linguistic levels:
morphological, lexical and syntactical are modelled using the finite-state tech-
nology is dedicated. Finally, several fully functional prototype applications of
handwriting recognition are presented.

Keywords: Handwritten text recognition, handwriting preprocessing methods,
handwriting feature extraction, Hidden Markov Models, handwriting recognition
application.

1 Introduction

The off-line and on-line continuous handwritten text recognition are one of the
current research areas carried out by the Pattern Recognition and Human Language
Technology (PRHLT) group of the “Instituto Tecnológico de Informática”. The
main purpose here is to provide a qualitative description of the group activity in

∗ Work supported by the Agencia Valenciana de Ciencia y Tecnoloǵıa (AVCiT)” under grant
GRUPOS03/031 and the Spanish Project TIRIG (TIC 2003-08496-C)
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these areas, starting with a general overview of a handwritten text recognition system
focussing specially on architectonic scheme. According to the considered case type
(off-line and on-line), different methodologies used for preprocessing and feature
extraction are briefly explained, emphasizing on their conceptual basis. Moreover, a
short description is offered about how the different linguistic levels: morphological,
lexical and syntactical are modelled and integrated together using the finite-state
technology.

The recognition problem for both off-line and on-line cases are addressed using
standard continuous speech technology. Many recent works of the group address this
problem in this way (see, among others, [1, 2, 3, 4]).

Here not only recognition has been considered, but also interpretation of the
recognized string is required as will be seen for handwritten text applications.

In the next section, a general overview of a handwriting recognition system is
shown. Section 3 describes the preprocessing and feature extraction methods more
frequently used by the group according to the considered case type. Section 4 is
dedicated to the models which the systems are based on. Finally, some functional
handwriting recognition prototype applications are presented in the last section.

2 System Overview

The handwritten text recognition system follows the classical architecture. Including
both training and recognition phases, it consists basically of five modules:

1. The preprocessing module: where line segmentation (just for off-line case
only), noise reduction and normalization take place.

2. The feature extraction module: where the input of a handwritten text is
transformed into a sequence of numerical feature vectors.

3. The character HMMs models training: where the HMM parameters are
estimated using the Baum-Welch re-estimation algorithm [5].

4. The lexicon and language models inference: where they are inferred from
the handwritten text image transcriptions. The language model will provide
linguistic knowledge about the context in which a word is likely to occur.

5. The recognition module: where sequences of feature vectors are converted
into word classes.

The fig 1 shows a scheme of a general handwritten text recognition system
overview.
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Figure 1: General handwritten text recognition system overview.
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3 Preprocessing and Feature Extraction

3.1 Off-Line Case

Preprocessing of handwritten text lines has not yet been given a general, standard
solution and it can be said that each handwriting recognition system has its own,
particular solution. There are, however, generic preprocessing operations such as
slope and slant correction for which robust techniques are available [2]. But in many
cases, other not so generic preprocessing operations are also needed to compensate
for a weakness in the ability of the system to model pattern variability. In particular,
this is the case of approaches like ours that use (one-dimensional) hidden Markov
models for a handwritten text line image. Although these models do properly model
(non-linear) horizontal image distortions, they are to some extent limited for vertical
distortion modeling. Therefore, apart from the usual slope and slant correction
preprocessing steps, it has been included a third step aimed at reducing a major
source of vertical variability: the height of ascenders and descenders. These steps
are discussed hereafter.

Slope correction module processes an original image to put the text line into
horizontal position. As each word or multi-word segment in the text line may be
skewed at a different angle, the original image is divided into segments surrounded
by wide blank spaces and slope correction is applied to each segment separately. This
is not to obtain a segmentation of the text line into words and it is not necessary
for each segment to contain exactly one word. In the fig. 2 is illustrated one of
the used slope correction methods which is carried out in four steps: a) horizontal
run-length smoothing of the segments comprising the original image (panel b.1 in
fig. 2); b) computation of the upper and lower contours for each segment (panel
b.2); c) eigenvector line fitting of the contours (panels b.3 and b.4); and d) segment
deskewing in accordance to the average angle of the contour lines (panel b.5).

Slant correction shears the deskewed image horizontally to bring the writing in
an upright position. Following the procedure described in [4], the dominant slant
angle of the writing is obtained based on projection profile.

As said above, the third step is aimed at reducing a major source vertical vari-
ability: the height of ascenders and descenders (not that of the main text body).
The reference lines computed for each image segment during slope correction are
updated and joined together to separate the main text body from the zones with
ascenders and descenders. Then, each of these zones is linearly scaled in height to a
size determined as a percentage of the main body vertical size. Since these zones are
often large, nearly blank areas, this scaling operation has the effect of filtering out
most of the uninformative background. It also compensates for the large variability
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of the ascenders and descenders height as compared with that of the main text body.

As with any approach based on (one-dimensional) hidden Markov models, feature
extraction is required to transform the preprocessed image into a sequence of (fixed-
dimension) feature vectors. To do this, the preprocessed image is first divided into
a grid of square cells whose size is a small fraction of the image height (such as
1/16, 1/20, 1/24 or 1/28). We call this fraction vertical resolution. Then each
cell is characterized by the following features: normalized grey level, horizontal grey-
level derivative and vertical grey-level derivative. To obtain smoothed values of these
features, feature extraction is extended to a 5×5 window centered at the current cell
weighted with a Gaussian function. The derivatives are computed by least squares
fitting of a linear function.

Columns of cells are processed from left to right and a feature vector is built for
each column by stacking the features computed in its constituent cells (panel e in
fig. 2). This process is similar to that followed by Bazzi et al [6].

3.2 On-Line Case

The main characteristic which determine the on-line nature is its input. The on-line
input data stream consists of a sequence of strokes. A stroke consists on a sequence
of coordinates ordered in time (xt, yt), that is a curve. There are two kinds of strokes:
pen-down strokes (also referred to as visible strokes) acquired with the digital pen
touching the pad surface, and pen-up strokes acquired without touching it. Because
of the visible-stroke information is effectively found in the pen-down strokes, pen-up
strokes are not considerated.

The preprocessing of each sample involves six processes: repeated points elimina-
tion, noise reduction, slope and slant normalization, size normalization and writing
speed normalization. Noise here, has different nature compared with off-line im-
ages. The text is introduced directely without any kind of intermediate support,
thus the background does not exists. Noise in handwritten strokes is due to erratic
hand motions and inaccuracy of the digitalization process. In order to reduce noise,
we employ a smoothing technique consisting in replacing every point (xt, yt) in the
trajectory by the mean value of its neighbors [7]. It is important to remark that the
temporal order of the data points is preserved throughout all preprocessing steps.

To correct the slope, the local minima point must be found for all strokes.
Anomalous points are eliminated. A line is adjusted using the eigenvector method.
Once, the line angle is determined, the image is corrected with a rotation operation.

For each line between two consecutive points, the angle is computed, then the
histogram of these angles is built. The slant angle is calculated by searching for the
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b.2
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b.4
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d

e

Figure 2: Preprocessing and feature extraction example. From top to bottom: a)
original image (“four millions” in Spanish); b) skew angle estimation and correction
(block of 5 joint panels); c) slant correction; d) height normalization for ascenders
and descenders; and e) extracted sequence of feature vectors (normalized grey levels,
horizontal derivatives and vertical derivatives). From top to bottom in the block of
5 joint panels describing skew angle estimation and correction: b.1) horizontal run-
length smoothing of the two segments (words) comprising the original image; b.2)
upper and lower contours; b.3) eigenvector line fitting of the contours; b.4) fitted
lines; and b.5) deskewed image.
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most frequent value in the angle histogram. To correct the slant, a shear operation
must be done.

Other commonly applied on-line HTR preprocessing operation is the so-called
trace segmentation, which consists in a resampling operation that redistribute data
points (originally sampled in equal time intervals) to enforce even spacing between
them. This way the word will have the same points at the same places indepen-
dently of the speed the word was written. Trace segmentation is used not only
for speed invariance, but also to reduce the size of the samples and speed up the
recognition time. In [8], PRHLT group carried out a study about the trace segmen-
tation resampling distance effect (figure 3 shows some processed word examples for
different resampling distances). As an alternative to trace segmentation is the use
of normalized derivatives. Derivatives explain both the direction and the speed of
the trace. If the module value of transformed derivatives becomes constant (equal
to 1), the representation will be invariant to the writing speed, while keeping the
direction information. It is shown that the use of ”normalized derivatives” leads to
better results compared with trace segmentation methodology.

Once the original coordinate sequences have been preprocessed they are trans-
formed into new temporal sequences of 6-dimensional real-valued feature vectors.
The six features computed for each sample point are: normalized vertical position
(yNt , within the range [0, 100]), first derivatives (x′, y′) calculated using the method
given in [9], second derivatives (x′′, y′′) computed in the same way as the first deriva-
tives and curvature (kt) which is the inverse of the radius of the curve in each point.
It is worth noting that the discarded pen-up strokes still remain implicit in the tran-
sition from each last point of a pen-down stroke and the initial point of its following
pen-down stroke. These transitions are characterized by first derivatives huge values.

The coordinate x is not used as a feature because of x range for different instances
of the same character, can vary greatly depending on the position of the character
into a word.

4 Modelling Scheme

Sentence models are built by concatenation of word models which, in turn, are
often obtained by concatenation of continuous left-to-right HMMs for individual
characters.

Basically, each character HMM is a stochastic finite-state device that models the
succession, along the horizontal axis for off-line case and time for on-line, of feature
vectors extracted from instances of this character. Each HMM state generates fea-
ture vectors following an adequate parametric probabilistic law; typically, a mixture
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Figure 3: From top to bottom: original image, trace segmentation with resampling
distance α = 60, with α = 40 and with α = 13 (the best performer). Note: in the
case of Derivative Normalization approximation, points remain at their position, the
image produced is similar to the original one.

of Gaussian densities. The adequate number of densities in the mixture per state,
as well as the number of HMM states, need to be tuned empirically and it may be
conditioned by the available amount of training data.

Once an HMM “topology” (number of states and structure) has been adopted,
the model parameters can be easily trained from images of continuously handwritten
text (without any kind of segmentation) accompanied by the transcription of these
images into the corresponding sequence of characters. This training process is carried
out using a well known instance of the EM algorithm called forward-backward or
Baum-Welch re-estimation [5].

From this point on, it is worth remarking that does not exist any difference in
the modelling scheme used by off-line and on-line cases, so the description hereafter
is the same for both.

Words are obviously formed by concatenation of characters. In our finite-state
modeling framework, for each word, a stochastic finite-state automaton (SFS) is
used to represent the possible concatenations of individual characters to compose
this word. This automaton takes into account possible inter-word blank spaces, as
well as optional character capitalizations. Fig. 4 shows an example of character
HMM (left) and SFS automaton word (right).

Sentences are formed by the concatenation of words. This concatenation is
modeled by SFS model automatically learned from training data [10] or built by
hand in accordance with previous knowledge about the task. Usually this SFS are
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Figure 4: An example of character HMM for off-line case and automaton word.
HMM modeling of instances of the character “a” within the Spanish word “cuarenta”
(forty). The states are shared among all the instances of characters of the same class.
Automaton for the lexicon entry “mil” (One hundred). The symbol “@” represents
a blank segment.

n-grams [5], which uses the previous n−1 words to predict the next one and can
be max-likelihood learned from a training (text) corpus, by simply counting relative
frequencies of n-word sequences in the corpus [5].

4.1 Recognition via Finite-State Models

Due to the homogeneous nature of all these finite-state (character, word and sen-
tence) models, they can be easily integrated into a single global SFS model that
accepts sequences of raw feature vectors and outputs strings of recognized words.
To this end each edge of the SFS sentence is expanded by a concatenation of the
HMMs of the successive characters which constitute the source-language word of this
edge. To deal with possible inter-word white space a blank (“@”) special HMM can
be trained and also integrated in the network. This network expansion, illustrated
in Fig. 5, realizes the integration of character, word and sentence levels.

Given an input sequence of feature vectors, the best output hypothesis is one
which corresponds to a series of states of the integrated model that, with highest
probability, produces the input feature-vector sequence. This global search process
is very efficiently carried out by the well known (beam-search-accelerated) Viterbi
algorithm [5]. This technique allows integration to be performed “on the fly” during
the decoding process. In this way, only the memory strictly required for the search
is actually allocated.
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5 Off-Line and On-Line HTR Applications

A set of implemented applications based on off and on-line HTR technology are
presented hereafter. It is worth noting that not only recognition has been considered,
but also interpretation of the recognized string. This is so especially for the two
following applications.

5.1 Handwriting Recognition System for Spanish Numbers

This is a syntax-constrained interpretation application, where the recognition con-
sists in getting adequate hypotheses about the handwritten words (see figure 6),
while the goal of interpretation is to come out with a numeric expression which,
overall, reflects what was written in letters as accurately as possible. It is not of
great importance whether all the words comprising the legal amount were correctly
written or whether they can be exactly recognized or not; only the reliability of the
interpreted numeric result really matters.

The interpretation is feasible, due to the use of a hand-built (sequential) stochas-
tic finite-state transducer [10] (SFST), that accepts any text Spanish number in the
range from 0 to 1012−1 and outputs an arithmetic expression giving its correspond-
ing numerical value. A small fragment of this transducer is shown in Fig. 7.

m i l
@

u

d

n o
@

o s

Figure 5: A small piece of an integrated finite-state model, using three-state char-
acter HMMs. The part shown stands for the sentences “mil”, “mil uno” and “mil
dos” (1,000; 1,001; 1,002).

Figure 6: Examples of real continuous text sentences of Spanish numeric amounts:
1,102 ; 38,000,024 ; 16,400,026.
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doscientos
+(200

mil
+(1000)

sesenta
+60

...

veinte
+20

...

y
dos
+2

...

mil
)*1000

mil
)*1000

Figure 7: A piece of the hand-designed numbers transducer. Solid-line edges corre-
spond to a path that accepts “doscientos sesenta y dos mil veinte” (two hundred
sixty two thousand and twenty), yielding “+(200+60+2)*1000+20”.

In other words, its output is an arithmetic expression whose value is that of the
number given through the input text; for example, from the Spanish text ”doscientos
sesenta y dos mil veinte” (two hundred sixty two thousand and twenty) the provided
output is: “+(200 + 60 + 2) ∗ 1000 + 20”. From this expression the target (decimal)
number (262,020) can be easily obtained easily from a simple postprocessing, piping
the output of the SFST to the standard Unix tool “bc”.

The figure 8 illustrates the full interpretation process carried out starting with
the usual preprocessing stage (already described in figure 2), following this, the
feature extraction phase and finishing with the output recognition-interpretation
arithmetic expression hypothesis.

This application resembling legal amount interpretation for bank checks, where a
reading system has to interpret the legal amount (written in letters) to determine the
real numeric sum (and to optionally verify whether this sum matches the courtesy
amount – written in digits).

5.2 Classification of Spontaneous Handwriting Answers

Here a handwritten text recognition and classification application entailing casual,
spontaneous writing and a relatively large vocabulary is considered. In this appli-
cation, however, the extreme difficulty of text recognition is somehow compensated
by the simplicity of the target result. The application consists of classifying (into
a small number of predefined classes) casual handwritten answers extracted from
survey forms made for a telecommunication company.1

The considered application phrases were handwritten by a heterogeneous group
of people, without any explicit or formal restriction relative to vocabulary, the result-
ing application lexicon becomes quite large. On the other hand, since no guidelines
are given as to the kind of pen or the writing style to be used, phrase become very

1Data kindly provided by ODEC, S.A. (www.odec.es)
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Figure 8: Example of preprocessing, feature extraction and output recognition-
interpretation arithmetic expression hypothesis of the Spanish text ”mil quinientos
cuarenta” (five hundred forty).

variable and noisy. For example, in some samples the stroke thickness is non-uniform
and the vertical slant also varies within a sample. Other samples present irregular
and non-consistent spacing between words and characters. Also, there are samples
written using different case and font types, variable sizes and even including foreign
language phrases. On the other hand, noise and non-textual artifacts often appear
in the phrases. Among these noisy elements we can find unknown words or words
containing orthographic mistakes, as well as underlined and crossed-out words. Un-
usual abbreviations and symbols, arrows, etc. are also within this category. The
combination of these writing-styles and noise may result in partly or entirely illeg-
ible samples. Examples of these difficulties are shown in Figure 9. So far, human
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DIFFERENT STYLES
DIFFICULT LINE SEPARATION

UNUSUAL ABBREVIATIONS
VARIABLE STROKE THICKNESS

CROSSED-OUT WORDS ORTHOGRAPHIC MISTAKES

FOREIGN LANGUAGE PHRASES
UNDERLINED PARAGRAPHS

NON-CONSISTENT SPACING VARIABLE SIZES

DIFF. CASE AND FONT TYPES
OTHERS

Figure 9: Some of the difficulties involved in the application.

operators have been in charge of classifying these phrases. They do it through a fast
reading which just aims to grasp the essential meaning of the answers. This implies
that not all the words can or need to be perfectly recognized; they just retrieve
enough information to get an adequate classification. In particular, the eight classes
defined in the application are: telephone rates, coverage problems, mobile telephone
problems, customer assistance, customers expressing satisfaction, service complains
and generic queries for information. The aim of our system is to help performing this
classification as fast and accurately as possible, with a minimal human intervention.
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In [1, 11], the group has proposed to tackle this difficult classification task using
a two-step or serial approach. Using character HMMs integrated with an n-gram
language model, recognition is first performed on each handwritten sample; then,
the recognized word sequence is classified into one of the given eight classes using
a text classifier based on either n-grams or multinomials. Figure 10 shows three
examples of handwritten phrase images along with their recognition-classification
results.

Image Recognition Result Classif. Result

BIEN OTRAS D LAS QUE
SE RECIBE LOS CORREO

MENSAJES SOBRE LOS
SERVICIOS A P MOVISTAR

Wrong

DIFICULTAD EN SABER
QUE CONTRATO

CAMBIAR
Correct

DEBERÍA TENER UN
SERVICIO EN E NOTICIAS
COMPLETAMENTE GRATIS

Correct

Figure 10: Examples of three handwritten phrases along with their recognition and
classification results. The misrecognized words are indicated in underlined bold-face.

5.3 Handwriting recognition application for Tablet PC

A Tablet PC is a relatively new generation of portable PC that has a touch screen
and whose main method of input is handwriting recognition. The group has been
developed an on-line handwriting recognition prototype application to run on one of
this machines. This application can recognize from isolated handwritten characters
to whole sentences.

The sequence of coordinates (xt, yt) are provided directely by the tablet pc input
panel, but also can be received from any device connected to Internet, as for example,
personal digital assistants (PDA). The figure shows this connection scheme.
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Point

Internet

pda
wifi

pda
wifi

pda
wifi

Tablet PC

This application is intended to be used in hospitals where medical personal could
employ PDA’s as a mean to take handwritten notes about, for example, clinical
diagnostic of patients. These notes are send to a central computer where they are
recognized and stored in a data base.
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Alberto Sanchis, Enrique Vidal

DSIC/ITI, Universitat Politècnica de València.
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Abstract

The naive Bayes classification model is a very simple classification technique
in which pattern features are assumed to be class-conditional independent. This
is the so-called naive Bayes or independence assumption. In spite of being
a strong, unrealistic assumption, the naive Bayes model often provides good
results at low cost in terms of model complexity. The Pattern Recognition
and Human Language Technology group from the Universitat Politècnica de
València maintains an active research line on this model, its generalisations
(mainly discrete mixture models) and applications (text classification, word
disambiguation and confidence measures for speech recognition, etc.).

Keywords: naive Bayes, mixtures, Bernoulli, multinomial, classification

1 Introduction

One of the simplest and most popular classification models is the naive Bayes clas-
sifier. Its simplicity its due to the so-called naive Bayes assumption: features are
assumed to be independent given the class. In spite of being a strong, unreal-
istic assumption, this classifier often provides good results. It is widely used for
discrete data; e.g. text data. However, the naive Bayes model has been recently
outperformed by techniques such as boosting-based classifier committees and sup-
port vector machines. Nevertheless, the performance of the naive Bayes classifier
can be significantly improved by using generalisations such as finite mixtures [1, 2, 3]
or other recent generalisations (and corrections) [4, 5, 6, 7, 8].

∗This work was partially supported by the Spanish “Ministerio de Ciencia y Tecnoloǵıa” under
grant DPI2001-0880-CO2-02, the EU project “TT2” (IST-2001-32091), the “Agencia Valenciana de
Ciencia y Tecnoloǵıa” under grant GRUPOS03/031, under grant FPI(CTBPRA/2005/004) and by
the Spanish project ITEFTE(TIC2003-08681-C02-02).
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The Pattern Recognition and Human Language Technology group from the Uni-
versitat Politècnica de València maintains an active research line on this model, its
generalisations and applications. Most of the generalisations proposed are based on
the use of finite mixtures. These models have been applied to text classification,
OCR and other tasks with good results.

The structure of this document is as follows. In Section 2, the naive Bayes
model and generalisations are described; this includes the Bernoulli and multinomial
instantiations, and its corresponding mixture extensions. Also, proposals for length
modelling and bilingual data are described. In Section 3, the results of applying naive
Bayes models to different tasks, on which we are currently working, are presented.
These tasks are OCR, estimation of confidence measures for speech recognition, word
disambiguation and text classification. Finally, some concluding remarks are given
in Section 4.

2 The naive Bayes model and generalisations

The Bayes classifier decides that the class of a given sample x is the class c(x) of
maximum posterior probability:

c(x) = argmax
c

p(c | x) (1)

This classifier gets his name from the Bayes rule:

p(c | x) =
p(x, c)
p(x)

=
p(x, c)∑
c′ p(x, c′)

=
p(c) p(x | c)∑
c′ p(c′) p(x | c′)

(2)

where p(c) is the prior probability of class c, and p(x | c) is the class c-conditional
probability of x. Since the denominator does not depend on c, the classification
problem can be expressed as:

c(x) = argmax
c

p(c) p(x | c)∑
c′ p(c′) p(x | c′)

= argmax
c

p(c) p(x | c)
(3)
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The naive Bayes is a particular case in which features are assumed to be class-
conditional independent. Formally, if x is a D-dimensional vector, we have:

c(x) = argmax
c

1
Z(x)

p(c)
I∏

i=1

p(xi | c) (4)

where Z(x) is a scaling factor dependent only on x.

2.1 Bernoulli instantiation

Let x be a D-dimensional bit vector. A conventional naive Bayes classifier for binary
data is based on the multidimensional Bernoulli distribution:

p(x) =
∏
d

p(xd) (5)

with
p(xd) = pxd

d (1 − pd)1−xd (6)

where, for all d = 1, . . . ,D, pd is the probability for bit d of being one. Note that
the probability of each bit is independent of other bit values.

The Bernoulli classifier equals the Bayes classifier in the particular case of class-
conditional Bernoulli distributions. Thus, we have:

c(x) = argmax
c

p(c)
∏
d

pcd
xd (1 − pcd)1−xd (7)

2.2 Multinomial instantiation

Another particular case of the Bayes classifier which is also a naive Bayes model is
the multinomial classifier. Let x be a D-dimensional vector of non-negative inte-
ger counts summing up to a given positive integer constant x+. The multinomial
distribution has the following probability function:

p(x) =
x+!∏
d p(xd)

(8)

with
p(xd) = pxd

d (9)

where, for all d = 1, . . . ,D, pd is the probability of the event whose number of
occurrences is given by xd. As is in the Bernoulli instantiation, the value of xd does
not depend on the values of other features.
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In the case of class-conditional multinomial distributions, the Bayes classifier is:

c(x) = argmax
c

p(c)
x+!∏
d xd!

∏
d

pcd
xd (10)

2.3 Length modelling

Length modelling for the multinomial text classifier is a well-known problem which is
often disregarded. To tackle this problem, we have studied the following estimation
technique for the class-conditional probability of a length l:

p̂(l | c) =
N(c, l)∑∞

l′=1 N(c, l′)
(11)

where N(c, l) is the number of documents of class c having length l.
Another possibility consists of modelling the length as a continuous density func-

tion and compute the length probability by integration [9]. The distribution pro-
posed is the Gamma distribution, since it has an infinity tail and its shape is very
similar to the table of frequencies of text sentence lengths. Formally, we have:

p̂(l | c) =
∫ l+1/2

l−1/2
Gamma(t | αc, βc) ∂t

=
∫ l+1/2

l−1/2

βc
αc

Γ(αc)
tαc−1e−βct ∂t

≈ βc
αc

Γ(αc)
lαc−1e−βcl

(12)

For the case of bimodal length distributions, we have also studied the use of
two-component finite mixture models. An example is shown in Figure 1.

2.4 Finite mixture models

A mixture of C components is a probability (density) function of the form:

f(x) =
C∑

c=1

f(x, c)

=
C∑

c=1

f(c) f(x | c)

=
C∑

c=1

pc f(x | c,Θ′)

(13)
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Figure 1: Example of a bimodal length distribution modelled by a two-component
mixture of Gamma distributions.

where we assume that pc = f(c) and f(x | c) = f(x | c,Θ′). Using this assumption,
the unknown model parameters are:

Θ =
(

p
Θ′

)
with p =

⎛
⎜⎜⎜⎝

p1

p2
...

pC

⎞
⎟⎟⎟⎠ (14)

In the most simple case we assume that the parameters of each component are
independent of the parameters of the rest of components. Thus, we have:

Θ′ = (Θ1
′,Θ2

′, . . . ,Θ3
′) (15)

and

f(x) =
C∑

c=1

pc f(x | c,Θc
′) (16)

To train a finite mixture model we use the EM algorithm assuming that xn is
a incomplete sample in the sense that it has lost the label of the component from
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which it has been generated [10]. This label can be written as an indicator vector:

Z =

⎛
⎜⎜⎜⎝

Z1

Z2
...

ZC

⎞
⎟⎟⎟⎠ ∈ {0, 1}C (17)

A value of one in zi indicates that the sample has been generated by the ith com-
ponent. Formally, Z is a multinomial variable of length one,

Z ∼ MultC(1,p) (18)

with the following probability function:

f(z | p) =
∏
c

pc
zc (19)

The so-called complete model is:

f(x, z) = f(z | p) f(x | z,Θc
′)

=
∏
c

( pc f(x | zc = 1,Θc
′) )zc (20)

from which the original, incomplete model (13) can be obtained by simple marginal-
isation:

f(x) =
∑
z

f(x, z)

=
∑
z

∏
c

( pc f(x | zc,Θc
′) )zc

=
∑

c

pc f(x | zc = 1,Θc
′)

(21)

In the E step, the function Q(Θ | Θ(k)) is defined and the expected value of
unknown variables is calculated from the value of parameters in iteration k, Θ(k).
So the function Q(Θ | Θ(k)) is:

Q(Θ | Θ(k)) =
∑
n

E( log f(xn, zn | Θ) | xn,Θ(k) )

=
∑
n,c

znc
(k) ( log pc + logf(xn | znc = 1,Θc

′) )
(22)
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where znc
(k) is calculated as:

znc
(k) = E(znc | x,Θ(k))

=
pc

(k)f(xn | znc = 1,Θc
′(k))∑

c′ pc′(k)f(xn | znc′ = 1,Θc′
′(k))

(23)

In the M step the value of Θ that maximises the expression of step E is calculated.

Θ(k+1) = argmax
Θ:

P
c pc=1

Q(Θ | Θ(k)) (24)

2.5 Bernoulli mixtures

The Bernoulli classifier can be generalised by using a mixture of several Bernoulli
distributions in each class, instead of a single Bernoulli distribution per class. A
Bernoulli mixture of I independent components is defined by a set of parameters of
the form (15) with

Θi
′ = pi =

⎛
⎜⎜⎜⎝

pi1

pi2
...

piD

⎞
⎟⎟⎟⎠ ∈ [0, 1]D (25)

So f(x | zi = 1,pi) is:

f(x | zi = 1,pi) =
∏
d

pid
xd (1 − pid)1−xd (26)

The resulting expression of step M to calculate the Bernoulli parameters is:

pi
(k+1) =

∑
n zni

(k)xn∑
n zni

(k)
(27)

A classifier based on class-conditional Bernoulli mixtures has the form:

c(x) = argmax
c

p(c)
∑

i

( pci

∏
d

( pcid
xd (1 − pcid)1−xd ) ) (28)

2.6 Multinomial mixtures

Multinomial mixtures are analogous to Bernoulli mixtures. A multinomial mixture
of I independent components is defined by a set of parameters of the form (15) with
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Θi
′ defined as in the Bernoulli mixture case (25), and also subject to the additional

constraint: ∑
d

pid = 1 (29)

So f(x | zi = 1,pi) is:

f(x | zi = 1,pi) =
x+!∏
d xd!

∏
d

pid
xd (30)

The M step in this case is:

pi
(k+1) =

∑
n zni

(k)xn

x+
∑

n zni
(k)

(31)

A classifier based on class-conditional multinomial mixtures has the form:

c(x) = argmax
c

p(c)
∑

i

( pci
x+!∏
d xd!

∏
d

pcid
xd ) (32)

2.7 Multilingual mixtures

Some several extensions of the multinomial text classifiers have been proposed for
the case in which the text data is available in two languages. The interest in this
task of bilingual text classification comes from its potential use in statistical ma-
chine translation. For example, the problem of learning a complex, global statistical
transducer from heterogeneous bilingual sentence pairs can be greatly simplified by
first classifying sentence pairs into homogeneous classes and then learning simpler,
class-specific transducers.

We begin with a multinomial mixture to compute the probability of a text p(x):

p(x) =
∑

i

αi p(x | i) (33)

where
p(x | i) =

x+!∏
d xd!

∏
d

pid
xd (34)

The goal is to model the probability of a bilingual text pair, (x,y). To this end,
three models have been proposed:

1. Bilingual bag-of-words model:

p(x,y) = p(z) (35)
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where z is a bilingual bag-of-words obtained from the concatenation of the
sentences originating (x,y), and p(z) is a monolingual, multinomial mixture
model.

2. Global (Naive Bayes) decomposition model:

p(x,y) = p(x) p(y) (36)

where p(x) and p(y) are given by (33).

3. Local (Naive Bayes) decomposition model:

p(x,y) =
∑

i

γi p(x,y | i) (37)

with p(x,y | i) = p(x | i) p(y | i) (38)

where p(x | i) is given by (34) and p(y | i) is an independent multinomial model

p(y | i) =
y+!∏
e ye!

∏
e

qie
ye (39)

The classifier based on (35) has the form:

c(x, y) = argmax
c

log pc + log
∑

i

αci

∏
d

pcid
xd (40)

In the case of the global decomposition model, it is:

c(x, y) = argmax
c

log pc + log
∑

i

αci

∏
d

pcid
xd + log

∑
i

βci

∏
e

qcie
ye (41)

while, in the local decomposition model, we have:

c(x, y) = argmax
c

log pc + log
∑

i

γci

∏
d

pcid
xd
∏
e

qcie
ye (42)

3 Applications in Pattern Recognition and Human Lan-
guage Processing

3.1 OCR using Bernoulli mixture-based classifiers

The OCR task consists in the recognition of handwritten characters or digits from
images. Basically, the OCR task is a classification task where we have a class for each
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character or digit to recognise. Character or digit images are images that represent
binary content, usually black outlines over a white background, so it is a task where
a binarisation of the input images is more appropriated to achieve good results. A
Bernoulli mixture classifier becomes a good choice to tackle this task.

The OCR task considered consists in the recognition of Indian digits [11], ex-
tracted from courtesy amounts of real bank drafts. Original samples are given as
binary images of different sizes (minimal bounding boxes). To obtain properly nor-
malised images, both in size and position, two simple preprocessing steps were ap-
plied. First, each digit image was pasted onto a square background whose centre
was aligned with the digit centre of mass. This square background was a white
image large enough (64× 64) to accommodate most samples though, in some cases,
larger background images were required. Second, given a size S, each digit image
was subsampled into S × S pixels, from which its corresponding binary vector of
dimension D = S2 was built. Figure 2 shows one preprocessed example of each
Indian digit (S = 30).

0 1 2 3 4

5 6 7 8 9

Figure 2: 30 × 30 examples of each Indian digit.

The standard experimental procedure for classification error rate estimation in
the Indian digits task is a simple partition with 7390 samples for training and 3035
for testing (excluding the extra classes delimiter and comma). Figure 3 shows, for all
S ∈ {14, 20, 30} and I ∈ {1, 2, 5, 10, 15, 20, 25}, the average error of the I-component
Bernoulli mixture classifier tested on the data subsampled at S × S pixels. Each
average was computed from 50 runs of the standard experimental procedure, each
run entailing a randomly initialised EM-based learning of a Bernoulli mixture per
class. For simplicity, we did not try classifiers with class-conditional mixtures of
different number of components; i.e. an I-component classifier means that a mixture
of Ic = I Bernoulli components was trained for each digit c.

From the results shown in Figure 3, first note that the curve for S = 14 is not
as good as those for 20 and 30, which are very similar. Therefore, a subsampling
value of 20 can be considered appropriate for this task. Note also that, as expected,
the error rate behaviour as a function of I can be described as a smooth concave
curve with its minimum at an intermediate value (around I = 15). That is, the
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Figure 3: Classification error rate as a function of the number of mixture components in
each class (I), for several image sizes. Error bars show standard error.

optimal model complexity is somewhere in between the simplest (I = 1) and the
most complex (I �) models.

3.2 Confidence measures in speech recognition

Current speech recognition systems are not error-free and, in consequence, it is de-
sirable for many applications to predict the reliability of each hypothesised word.
This can be seen as a conventional pattern recognition problem in which each hy-
pothesised word is to be transformed into a feature vector and then classified as
either correct or incorrect. The basic problem then is to decide which predictor
(pattern) features and classification model should be used.

As predictor features can be used well known predictors such as: Acoustic stabil-
ity, Language model probability (LMProb), Hypothesis density (HD), PercPh, Dura-
tion and ACscore. In addition to these features we have recently introduced “Word
Trellis Stability” (WTS) [12]. Other features that we have recently proposed are
WgAC, WgLM and WgTOT. These three features are based on word posterior
probabilities estimated on multiple word graphs [13].

The classification model used in this task is a naive Bayes model in which pa-
rameters are estimated using sophisticated smoothing techniques imported from
statistical language modelling [14]. We use c = 0 and c = 1 for the correct and
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incorrect classes, respectively. Given an hypothesised word w and a D-dimensional
vector of (discrete) features x, the classification model is:

c(x) = argmax
c

p(c | w)
∏
d

p(xd | c, w) (43)

We carried out experiments using the FUB task, an Italian speech corpus of
phone calls to the front desk of a hotel. A training set was used to train Italian
context dependent phone models. The acoustic models were left-to-right continuous
density HMMS, trained using Linear Discriminant Analysis (LDA) and a Viterbi
approximation. Decision-tree clustered generalised triphones were used as phone-
units. A smoothed trigram language model was estimated using the transcriptions
of the training utterances. The criterion used to measure the performance of the
classifier is the Confidence Error Rate (CER), defined as the number of classifica-
tion errors divided by the total number of recognised words. A baseline CER was
obtained by assuming that all recognised words are classified as correct. The best
results for individual features were given by WgLM and AS, with a CER of 16.4 and
16.3 respectively. The naive Bayes model was employed to explore the performance
of the classifier on many feature combinations. Results are given in Table 3.2.

Features CER(%) red.(%)
AcScore + WgTOTmax +

WTSmax + Dur + AS + WgLMavg 13.1 37.6
WTSmax + Dur + AS + WgLMavg 13.6 35.2

Dur + AS + WgLMmax 14.4 31.4
AS + WgLMmax 14.5 31.0

WgLMavg 16.4 21.9
Baseline 21.0 -

Table 1: CER and relative reduction in baseline CER baseline for the best feature
combinations

The results show that the single performance is improved through the (naive
Bayes) combination of the different features.

3.3 Word disambiguation

Word disambiguation is an interesting problem in rule-based and hybrid machine
translation [15]. This problem consists in finding the correct translation of a word
in a sentence of a certain source language, among all its potential translations into
words from a different target language. For example, the Spanish word en has four
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possible translations into Catalan: en, a, per and amb. Depending on the particular
sentence context where we find en, we have to choose its correct translation into
Catalan.

Word translation disambiguation of each (ambiguous) word in the input vocab-
ulary entails a separate classification problem, where each possible translation is a
class. Using the prefix and suffix (u,v) of the sentence where the ambiguous word
appears, we decide the correct translation in accordance with the Bayes decision
rule:

c(u, v) = argmax
c

p(c | u, v) (44)

To simplify the problem, we assume that word ordering is uninformative, and hence
we may represent the context as a “bag of words” x. Also, we limit the context of
a word to its immediately surrounding neighbours.

We used the multinomial text classifier for word disambiguation based on the
above “bag of words” representation. To avoid overfitting, two smoothing techniques
were used: Laplace smoothing and absolute discounting, where the gained probabil-
ity mass is distributed among words with null counts (backing-off ), or all words
(interpolation), in accordance with a generalised distribution such as a uniform or
unigram distribution.

Experiments were based on a parallel Spanish-Catalan corpus extracted from the
newspaper El Periódico. We used a dictionary with 7085 ambiguous words. Results
are shown in Figure 4. They are significantly better than those obtained without
the multinomial classifier.

3.4 Text classification

Text classification is a typical task in which multinomial classifiers has been used.
Each text (sample) is interpreted as a “bag of words”, that is, we assume the order in
which words occur in the text is not important. Also, we assume that the number of
occurrences of a word does not depend of the number of occurrences of other words
(naive Bayes assumption). To improve the comparatively poor performance of the
basic, multinomial text classifier, we have proposed two generalisations: the addition
of a length model 2.3, and the use of class-conditional multilingual mixtures 2.7.

The addition of the length model was tested on the BAF corpus. It is a real task
composed of French-English sentences pairs, classified into four classes according to
their origin. We used the two smoothing techniques discussed in the previous section.
Results are given in Figure 5. From this Figure, it becomes clear that the use of a
length model slightly improves the results.

We have done experiments with BAF corpus and the bilingual classifiers. The
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Figure 4: Average error rate (percentage of misclassified contexts) of the multinomial
classifier, as a function of the smoothing discount, for several smoothing techniques,
window sizes (one in each panel), for both unnormalised and normalised word counts.
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results can be seen in Figure 6. Two outstanding conclusions can be state from the
results shown. First, mixture-based classifiers surpass single-component classifiers
in all cases. Second, bilingual classifiers outperform their monolingual counterparts.
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Figure 6: Error rate and log-likelihood curves in training and test sets as a function
of the number of mixture components, in BAF for the four classifiers considered.
Classifiers: the best monolingual, the bilingual bag-of-words (BBoW), the global
and the local classifier.

4 Concluding remarks

In this paper, we have reviewed the naive Bayes classifier, its conventional instanti-
ations, and several generalisations and applications studied by the “Pattern Recog-
nition and Human Language Technology” research group. In particular, we have
reviewed the Bernoulli and multinomial instantiations, a version of the multinomial
classifier enriched by a length model, and extensions of the two basic instantiations
to class-conditional mixtures. Also, we reviewed extensions of the class-conditional
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multinomial mixture-based classifier to the case of bilingual data. Regarding appli-
cations, we have described successful application of these models to very different
tasks: OCR, confidence measures for speech recognition, word disambiguation in
machine translation and general text classification.

References

[1] A. Juan and E. Vidal. On the use of Bernoulli mixture models for text classi-
fication. Pattern Recognition, 35(12):2705–2710, 2002.

[2] K. Nigam et al. Text Classification from Labeled and Unlabeled Documents
using EM. Machine Learning, 39(2/3):103–134, 2000.
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Imágenes (CEDI 2005), Simposio de la Asociación Española de Reconocimiento
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Abstract

Single-mode biometric verification systems differ each other greatly in terms of
performance and vulnerability to spoofing. Face and Voice identification technology are
not as accurate as others, such as iris, retina or fingerprint scanning, but have features
that beat other biometric options in a multitude of practical scenarios and they can
be the preferable option in wide-spread applications like remote accessing to Internet.
Audiovisual biometric techniques try to improve accurateness by merging face and
voice traits in such a way that False Rejection and False Acceptance Rates are always
smaller than using the alternative single-mode biometric systems alone. In this work
we present the advances of our group in face and voice verification. We also present an
internet-based application for secure identity authentication using audiovisual biometric
patterns.

Keywords : biometric features, face and voice-based recognition, web-based authentica-
tion.

1 Introduction

Classical techniques for electronic person authentication have several drawbacks in terms
of performing reliable and user-friendly identity recognition; this occurs particularly with
remote operations, more prone to hacker attacks. Automatic identity verification, based
on distinctive anatomical features (e.g., face, voice, fingerprint, iris, etc.) and behavioral
characteristics (e.g., online/offline signature, keystroke dynamics, etc), is becoming an in-
creasingly reliable standalone solution and attracting a great deal of attention as far as
remotely-based applications are concerned. Some of the biometric-inherited drawbacks as-
sociated with large-scale deployment of any biometric authentication application can be
partially circumvented using simultaneous or alternative biometric traits [1] that mitigate
the problems associated with spoofing, failure-to-enroll, noise in a particular sensor or ac-
quired feature, intra-class variation and inter-class similarities.

Nowadays, face and voice are the only biometric traits that can be captured at very low
cost in almost any desktop, laptop or cellular-phone in the market. It is true that other bio-
metric traits, like fingerprints, iris or even behavioral traits like signature dynamics, can be
captured with desktop devices under 200 euros and are acknowledged as being more robust
and accurate than audiovisual features (at least fingerprints and iris), but people is much
more concerned about these patterns being captured and handled by automatic systems.

180 Pattern Recognition : Progress, Directions and Applications

Edited by F.Pla, P.Radeva, J.Vitrià, 2006.



When talking about widespread internet-based applications these drawbacks make audiovi-
sual biometric traits the preferable choice for a multi-biometric authentication system.

In this paper we present the advances of our research group on face and voice authentica-
tion and give results on two well-known multi-modal databases: XM2VTS [2] and BANCA
[3]. The algorithms shown in this work are integrated in an open framework for distributed
biometric authentication in a web environment [4], that will be superficially described also
in this paper.

The paper is organized as follows: section 2 is dedicated to advances in face authentica-
tion based on local matching approaches. Several methods to combine local information are
explained and results given for the two mentioned databases. Section 3 details the state of
the art speaker recognition algorithms used for authentication and shows results on BANCA
database. Section 4 is dedicated to summarize the main features of the web-based biometric
authentication system and section 5 gives some conclusions and future research lines.

2 Face verification through local matching approaches

One of the most successful approaches to automatic face recognition is the Elastic Bunch
Graph Matching algorithm (EBGM) [5]. It combines local and global representation of the
face by computing multi-scale and multi-orientation Gabor responses (jets) from a set of
the so-called fiducial points, located at specific face regions (eyes, tip of the nose, mouth. . . ,
i.e. “universal” features). Finding every fiducial point relies on a matching process between
the candidate jet and a bunch of jets extracted from the corresponding fiducial points of
different faces. This matching problem is solved by maximizing a function that takes texture
and geometrical distortion into account. In this way, there are several variables that can
affect the accuracy of the final positions, as differences in pose, illumination conditions and
insufficient representativeness of the stored bunch of jets. Once fiducial points are adjusted,
only textural information (Gabor jets) is used in the classifier.

The main differences between EBGM and our approach [6] are focused on the way
we locate and match fiducial points and on the final dissimilarity function that does not
only use texture but also geometrical information. Our method locates salientable points
in face images by means of the ridges and valleys operator. As only some basic image
operations are needed, the computational load is reduced from the original EBGM algorithm
and, at the same time, possible discriminative locations are found in an early stage of the
recognition process. In this sense we say that this method is inherently discriminative, in
contrast to trainable parametric models. The set of selected points turned out to be quite
robust against illumination conditions and slight variations in pose. Many of the located
fiducial points belong to “universal” features, but many others are person-dependent. So,
EBGM locates a pre-defined set of “universal” features and our approach finds a person-
dependent set of features. The correspondence between fiducial points of two faces only
uses geometrical information and it is based on shape contexts [7]. As a byproduct of the
correspondence algorithm, we extract measures of local geometrical distortion. Gabor jets
are also calculated from the adjusted points and the final dissimilarity function compiles
geometrical and textural information.
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2.1 Shape-driven point selection

In this work, shape information has been obtained using the ridges and valleys operator
because of its robustness against illumination changes [8]. Moreover, the relevance of valleys
in face shape description has been pointed out by some cognitive science works [9]. In this
paper, we have used the ridges and valleys obtained by thresholding the so-called multi local
level set extrinsic curvature (MLSEC) [10]. The MLSEC operator works here as follows: i)
computing the normalized gradient vector field of the smoothed image, ii) calculating the
divergence of this vector field, which is bounded and gives an intuitive measure of valleyness
(positive values running from 0 to 2) and ridgeness (negative values from -2 to 0), and iii)
thresholding the response so that image pixels where the MLSEC response is smaller than
-1 are considered ridges, and those pixels larger than 1 are considered valleys.

Once the feature descriptor has been properly defined, we have a way of describing
fiducial points in terms of positions where the geometrical image features have been detected.
For this shape descriptor to be useful in face recognition or authentication, local texture
information must be also taken into account. Gabor wavelets are biologically motivated
convolution kernels that capture this kind of information and are also quite invariant to the
local mean brightness, so an efficient face encoding approach will be to extract texture from
these geometrically salience regions.

Figure 1: Left: Original Image. Center-left: Valleys and ridges image. Center-right: Thresh-
olded ridges image. Right: Thresholded valleys image

After ridges and valleys in a new image have been extracted, we must sample these lines
in order to keep a set of points for further processing. There are some possible combinations,
in terms of using just ridges, just valleys or both of them, so we will refer to the binary image,
obtained as a result of the previous step, as the sketch from now on.

In order to select a set of points from the original sketch, a dense rectangular grid (Nx×Ny

nodes) is applied onto the face image and each grid node changes its position until it finds
the nearest line of the sketch. So, finally, we get a vector of points P = { �p1, �p2, . . . , �pn}1,
where �pi ∈ R

2. These points sample the original sketch, as it can be seen in figure 2.
1n = Nx ×Ny. Typical sizes for n are 100 or more nodes
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2.2 Point Matching

Once we have the two face images, F1 and F2, at common size, we want to proceed to
compute similarity between them. Let P = { �p1, �p2, . . . , �pn} be the set of points for F1, and
Q = {�q1, �q2, . . . , �qn} the set of points for F2.

In order to compare feature vectors extracted at these positions, we must first compute
the matching between points from both images. We have adopted the idea described in
[7]. For each point i in the constellation, we compute a 2-D histogram hi of the relative
position of the remaining points, so that a vector of distances D = {di1, di2, . . . , din} and a
vector of angles �θ = {θi1, θi2, . . . , θin} are calculated for each point. As in [7], we employ
bins that are uniform in log-polar space, i.e. the logarithm of distances is computed. Each
pair (log dij , θij) will increase the number of counts in the adequate bin of the histogram.

Once the sets of histograms are computed for both faces, we must match each point in
the first set P with a point from the second set Q. A point �p from P is matched to a point
�q from Q if the term Cpq, defined as:

Cpq =
∑

k

[hp (k) − hq (k)]2

hp (k) + hq (k)
(1)

is minimized2. Finally, we have a correspondence between points defined by ξ:

ξ (i) : �pi =⇒ �qξ(i) (2)

where �pi ∈ P and �qξ(i) ∈ Q.

2.3 Local texture matching through Gabor jets similarities

The system uses a set of 40 Gabor filters, with the same configuration employed in [5]. These
filters are convolution kernels in the shape of plane waves restricted by a Gaussian envelope,

2k in (1) runs over the number of bins in the 2D histogram

Figure 2: Left: Original rectangular dense grid. Center: Valleys and ridges sketch. Right:
Grid adjusted to the sketch.
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as it is shown next:

ψm (−→x ) =

∥∥∥−→k m

∥∥∥2

σ2
exp

⎛
⎜⎝−

∥∥∥−→k m

∥∥∥2

‖−→x ‖2

2σ2

⎞
⎟⎠
[
exp

(
i
−→
k m · −→x

)
− exp

(
−σ2

2

)]
(3)

where
−→
k m contains information about frequency and orientation of the filters, −→x = (x, y)T

and σ = 2π.
The region surrounding a pixel in the image is encoded by the convolution of the image

patch with these filters, and the set of responses is called a jet, J . So, a jet is a vector with
40 coefficients, and it provides information about a specific region of the image. At point
�pi = [xi, yi]

T , we get the following feature vector:

{J�pi
}m =

∑
x

∑
y

I(x, y)ψm (xi − x, yi − y) (4)

where {J�pi
}m stands for the m-th coefficient of the feature vector extracted from �pi. The

textural score between two images is:

SJ = fn

{
< J�pi

,J�qξ(i) >
}

�pi∈P
(5)

where < J�pi
,J�qξ(i) > represents the normalized dot product between correspondent jets,

but taking into account that only the moduli of jet coefficients are used. In (5), fn stands
for a generic combination rule of the n dot products.

2.4 Shape distortion as dissimilarity measurement

Once we have extracted the ridges and valleys from two face images, a global shape score
can be obtained. One of the most successful dissimilarity measurements for sets of points
(or binary images) is the Hausdorff distance, that has been widely used for object matching
in scene analysis [11]. It is well known that the standard Hausdorff distance is quite sensible
to outliers, so some modifications [12] have been used to avoid such a problem. In this work,
we have used a particular modification that can be referred as Average Hausdorff Distance
(AHD). Given two sets A and B, the directed Average Hausdorff Distance ahd(A,B) from
the set A to the set B, (assuming Euclidean distance between set elements) is:

ahd(A,B) =
1
|A|

∑
a∈A

min
b∈B

(‖a − b‖) (6)

where |A| denotes the cardinal of the set A. So, the (symmetric) Average Hausdorff Distance
(AHD) can be formally written as:

AHD(A,B) =
1
2
(ahd(A,B) + ahd(B,A)) (7)

The computation of AHD(A,B) is easily performed as a double dot product: given our
binary image F1(x, y) that can be thought of as the output of any contour operator, with
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A = {(x, y)|F1(x, y) = 1}; we can define
−→F1 as the binary vector associated to the binary

image F1, and F̂1 = 1
|A|

−→F1 the associated normalized vector. For a digital binary image, we
can define the Distance Transform, D(F1) [13], as a point-wise transform that contains, for
each pixel, the distance between that pixel and the pixel of value 1 closest to it. The vector
format for the distance transform D(

−→F1) can also be extended to the associated normalized
image D(F̂1) with the same meaning. With these definitions, the AHD between binary
images can then be calculated averaging inner products:

AHD(F1,F2) =
1
2
(< F̂1, D(F̂2) > + < F̂2, D(F̂1) >) (8)

Now that global shape distortion has been taken into account throughout the computa-
tion of AHD(F1,F2), local shape distortions will be handled. So, we introduce two different
terms here:

GD1 (F1,F2) ≡ GD1 (P ,Q) =
n∑

i=1

viCiξ(i) (9)

GD2 (F1,F2) ≡ GD2 (P ,Q) =
n∑

i=1

wi

∥∥−−→picP −−−−−→qξ(i)cQ
∥∥ (10)

Equation (9) computes geometrical distortion by linearly combining the individual costs
represented in (1). On the other hand, (10) calculates metric deformation by combining the
norm of the difference vector between matched points3.

Weighting vectors v and w can be simply set to the vector
−→
1 or can be discriminatively

calculated. When dealing with face shape distortion, it is obvious that regions related to
face muscles are more likely to suffer slight displacements than others. Hence, the local con-
tributions in GD1 and GD2 must be weighted accordingly. We have found the n components
of v and w as the Fisher best discriminative direction between the local shape distortion
vectors for evaluation clients and impostors. GD1 and GD2 can be seen as global shape
distortion measurements, that should be large for faces of different subjects and small for
faces representing the same person. If faces are in an upright position and are scaled at the
same size, adding the global distortion AHD(F1,F2) increases the discriminative power of
the shape part of the classifier, as it will be seen at the results section.

Now we can think of linearly combining jet dissimilarity, [1 − SJ (F1,F2)], with shape
deformations, resulting in the final dissimilarity function DS (F1,F2):

DS (F1,F2) = λ1 [1 − SJ (F1,F2)] + λ2GD1 (F1,F2) + λ3GD2 (F1,F2) + λ4AHD(F1,F2) (11)

with λi > 0. The combination of GD1 and GD2 is what we call Sketch Distortion (SKD).
If we set fn ≡ mean, from (11) and using (5), (9) and (10), it follows that DS (F1,F2) is
equal to:

n∑
i=1

[
λ1

1− < J�pi
,J�qξ(i) >

n
+ λ2Ciξ(i) + λ3

∥∥−−→picP −−−−−→qξ(i)cQ
∥∥] + λ4 · AHD(F1,F2) (12)

3Note that the centroid of the constellation has been subtracted from the point coordinates in order to
deal with translation
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Table 1: Sketch Distortion (SKD) between the face images from figures 3 to 4
Subject A Subject B

Image 1 Image 2 Image 1 Image 2

Image 1 0 1851 3335 3226
Subject A

Image 2 1851 0 3053 2821

Image 1 3335 3053 0 1889
Subject B

Image 2 3326 2821 1889 0

In (12) we can see that each contribution of jet dissimilarity is modified with a weighted
geometrical distortion (the so-called Local Sketch Distortion or LSKD). A high value in
LSKD from the pair

(
�pi, �qξ(i)

)
means that they are not positioned over the same face region,

so that jet dissimilarity will also be high. This fact is more likely to occur when incoming
faces do not represent the same person. Even if LSKD is low, but faces do not belong to
the same person, textural information will increase the dissimilarity between them. On the
other hand, when faces belong to the same subject, low LSKD values should be generally
achieved, so that matched points are located over the same face region, resulting in a low
jet dissimilarity. Thus, the measurement in (12) reinforces discrimination between subjects.
Figures 3 and 4 give a visual understanding of this concept. Figure 3 shows two instances of
face images from subject A, while faces in figure 4 belong to subject B. The visual geometric
difference between the two persons is reflected in the Sketch Distortion term, whose values
are shown in table 1.

The scores weighting vector
−→
λ = [λ1, λ2, λ3, λ4]

T is absolutely necessary to avoid that
scores with weak performance provoke an useless score combination.

Figure 3: Top: Left: First image from subject A. Center: Valleys and ridges sketch. Right:
Grid adjusted to the sketch. Bottom: Left: Second image from subject A. Center: Valleys
and ridges sketch. Right: Grid adjusted to the sketch.
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Figure 4: Top: Left: First image from subject B. Center: Valleys and ridges sketch. Right:
Grid adjusted to the sketch. Bottom: Left: Second image from subject B. Center: Valleys
and ridges sketch. Right: Grid adjusted to the sketch.

2.4.1 Results over the XM2VTS database

We tested our method using the XM2VTS database on configuration I of the Lausanne pro-
tocol [14]. The XM2VTS database contains synchronized image and speech data recorded
on 295 subjects during four sessions taken at one month intervals. The database was divided
into three sets: a training set, an evaluation set, and a test set. The training set was used
to build client models, while the evaluation set was used to select the most discriminative
nodes and to estimate thresholds. Finally, the test set was only used to measure the perfor-
mance of the system. The 295 subjects were divided into a set of 200 clients, 25 evaluation
impostors, and 70 test impostors. The results are presented in table 2. In the first row
of this table, although only textural information (T ) is used, i.e. λ1 = 1, λ2,3,4 = 0, some
shape information still remains, because jets are extracted and compared at geometrically
matched fiducial points. The next row shows the performance using only the AHD score.
Rows 3rd and 4th show the performance using the GD1 and the GD2 scores with Fisher
weighting vectors (v and w) for balancing local shape distortion. The results in the fifth
row (T + SKD) were achieved by using λ1,2,3 = 1, λ4 = 0. Sixth row (T + AHD) shows
performance with λ1,4 = 1, λ2,3 = 0. Next row presents the error rates with

−→
λ = [1, 1, 1, 1]T .

Finally, the last row shows the results using the two vectors v and w mentioned above, and
a second level of Fisher discriminative weighting for balancing individual scores λi.

¿From this table we can highlight: i) Textural information extracted from person-
dependent points performs better than any of the shape measurements tested, ii) GD1

and GD2, obtained as a byproduct of the point matching process do not perform well alone.
Moreover, the direct combination of SKD with jet dissimilarity yields a worse performance
than using Gabor responses alone, and the same for (T +AHD) and (T +SKD+AHD), but
iii) both types of shape distortion help to reduce error rates when they are discriminatively
combined with jet dissimilarity (a relative improvement of 13.53%).

Up to now, all feature vectors (jets) have been weighted equally to get the texture score,
i.e. SJ . In the following sections we will explain two different strategies to weigh and select
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Table 2: FRRev(%),FARev(%),FARtest(%) and FRRtest(%) (at EER threshold) for dif-
ferent configurations

Method FRRev(%) FARev(%) FARtest(%) FRRtest(%)

Textural (T ) 3.17 2.36 2.5 5.11

AHD 8.67 6.08 11.75 7.22

GD1 13.5 6.41 29.75 11.12

GD2 13.17 7.21 38 12.09

T + SKD 3.33 1.73 5.75 4.23

T + AHD 4.17 2.76 4.75 4.93

T + SKD+AHD 2.67 2.02 4.25 4.26

Fisher combination 1.83 1.86 2.25 4.33

Figure 5: Rectangular grid used to take the local features

feature vectors from a given image. The first of them is a LDA-based approach used when
Gabor jets are extracted from nodes in a rectangular grid. The other one is an accuracy-
based method, and it can be applied to rectangular grids or to select the best nodes obtained
through Ridges and Valleys sampling.

2.5 Combining local similarities

In this section we show a strategy [15] to weight the different Gabor similarities when the
Gabor jets are located in small windows which are centered following the rectangular grid
pattern that we can see in the figure 5. The face images have been normalized to align the
center of the eyes and the mouth to the same windows for all the images. This grid has 13
rows and 10 columns, so we have N = 130 Gabor jets with 40 coefficients each encoding
every frontal face image.

Let P = {�p1, �p2, . . . , �pN} denote the set of points we use to extract the texture informa-
tion, and J = {J �p1 ,J �p2 , . . . ,J �pN

} be the set of jets calculated for one face. The similarity
function between two Gabor jets taken from two different images I1 and I2 results in:

S
(
J 1

�pi
,J 2

�pi

)
=< J 1

�pi
,J 2

�pi
> , (13)

where < J 1
�pi

,J 2
�pi

> represents the normalized dot product between the i-th component from
J 1 and the corresponding component from J 2, but taking into account that only the moduli
of jet coefficients are used.
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So, if we want to compare two frontal face images, we will get, using the equation 13,
the following similarity set:

SI1,I2 = {S
(
J 1

�p1
,J 2

�p1

)
, . . . ,S

(
J 1

�pN
,J 2

�pN

)
} (14)

These similarity scores then have to be combined to a single decision score output by an
appropriate fusion rule.

When we have T training images for the client training we have several choices. One of
them is to make a decision based on the similarity set that we can get comparing a single
user template with the probe image. On the other hand we could use the Gabor jets of every
training image as a template, and then obtain T different decision scores. This approach,
which is the information fusion approach adopted in this paper and is referred as multiple
template method, then requires the fusion of decision scores corresponding to the individual
templates.

2.5.1 Information Fusion

Let us suppose that we have T different training images for every client. We can then build
a set of T decision functions for the user k, and we can write them as:

Dk
i (J ) = f

(
J ,J k,i

)
, i ∈ {1, . . . , T} , (15)

where J k,i denotes the ith training image for user k, and assuming that the decision functions
f (·) computed for the respective training images are identical.

As indicated in the previous Section, the decision function Dk
i (J ) is realised as a two

step operation where by in the first step we obtain similarity scores for the individual local
jets and in the second stage we fuse these scores by a fusion rule, g(·), i.e.

f
(
J ,J k,i

)
= g{S

(
J �p1 ,J k,i

�p1

)
, . . . ,S

(
J �pN

,J k,i
�pN

)
} (16)

Pattern Recognition : Progress, Directions and Applications 189



ThresholdImpostor
data

data
Client

Projection Thresholding

Soft decision Hard decision

Test vectors

EVALUATION

TRAINING

computations
Linear/Non Linear

projection

LDA or MLP

Figure 7: LDA or MLP based fusion

The decision scores obtained for the multiple templates then have to be fused. The
decision fusion function can be defined as Dk(Dk

1 , . . . ,Dk
T ), and can be performed by any

suitable fusion function such as those described in the next Section 2.5.2. This decision
fusion function must take the final decision about the identity claim as

Dk = h
(
Dk

1 , . . . , Dk
T

)
(17)

An overview of the scheme is shown in figure 6.

2.5.2 Fusion Methods

The fusion of image component similarity scores defined in equation 16 as well as the decision
score fusion in equation 17 can be implemented using one of several trainable or non trainable
functions or rules for this task, as MLP, SVM, LDA, AdaBoost or the sum rule. For this
experiment we will compare the performance of MLP and LDA. In figure 7 we can see
an overview of the training and evaluation processes with these methods. Both LDA and
MLP outputs are not thresholded in the decision score level because it could cause a loss of
information in this stage.

The MLP that we use in this experiment is a fully connected and one hidden layer
network. Based on some previous work we decided to use 3 neurons in the hidden layer to
get the decision scores and 2 neurons in the hidden layer for the decision score fusion. We
have trained the MLPs using the standard backpropagation algorithm.

2.5.3 LDA-based Feature Selection

In a two class problem, LDA yields just one direction vector. Each component vi of the LDA
vector v represents the weight of the contribution of the ith component to the separability
of the two classes as measured by the eigenvalue of the LDA eigenanalysis problem. At this
point it is pertinent to ask whether the coefficient values could be used to judge which of
the features are least useful from the point of view of class separation. If there was a basis
for identifying irrelevant features, we could reduce the dimensionality of the problem and at
the same time improve the performance of the fusion system. This is the normal positive
outcome one can expect from feature selection.

To answer this question, let us look at the LDA solution in more detail. Let X =
[x1, . . . , xN ] denote our Gabor jet similarities vector. Clearly, xi are not independent, as
ideally, all similarity values should be high for the true identity claim and vice-versa for
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an impostor claim. However, it is not unreasonable to assume that xi is class conditional
independent of xj ∀i, j|i �= j and i, j ∈ {1, . . . , N}. This is a relatively strong assumption,
but for the sake of simplicity, we shall adopt it.

Let the mean of the ith component be denoted µi,0 = E{xi|C = 0} and µi,1 = E{xi|C =
1}, where C = 1 when X comes from a true identity claim and C = 0 when X comes from
a false identity claim. Let µi = 1

2 (µi,0 + µi,1). Further, let σ2
i,0 = {(xi − µi,0)2|C = 0}

and σ2
i,1 = {(xi − µi,1)2|C = 1} denote the variances of the similarity scores. Let ci =

1
2 (σ2

i,0 + σ2
i,1).

As xi represents similarity and the greater the similarity the higher the value of xi, we
can assume µi,1 > µi,0, ∀i ∈ {1, . . . , N}.

LDA finds a one dimensional subspace in which the separability of true clients and
impostors is maximised. The solution is defined in terms of the within class and between
class scatter matrices Sw and Sb respectively, i.e.

Sw =

⎛
⎜⎜⎜⎝

c1 0 . . . 0
0 c2 . . . 0
...

...
. . .

...
0 . . . 0 cN

⎞
⎟⎟⎟⎠ (18)

Sb = (µ1 − µ0)(µ1 − µ0)T (19)

where µC is the mean vector of class C composed of the above components.
Now the LDA subspace is defined by the solution to the eigenvalue problem

S−1
w Sbv − λv = 0 (20)

In our face verification case equation 20 has only one non zero eigenvalue λ and the corre-
sponding eigenvector defines the LDA subspace. It is easy to show that the eigenvector v is
defined as

v = S−1
w (µ1 − µ0) (21)

Recall that all the components of the difference of the two mean vectors are non negative.
Then from equations 21 and 18 it follows that the components of the LDA vector v should
also be non negative. If a component is non positive, it means that the actual training data
is such that

• the observations do not satisfy the axiomatic properties of similarities

• the component has a strong negative correlations with some other components in the
feature vector, so it is most likely encoding random redundant information emerging
from the sampling problems, rather than genuine discriminatory information. Reflect-
ing this information in the learned solution does help to get a better performance on
the evaluation set where it is used as a dissimilarity. However, this does not extend to
the test set.
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When LDA projection vector components have all the same sign, the similarity scores
are re-enforcing each other and compensating for within class variations. But for a negative
component in the projection vector a positive similarity information in that dimension is
not helping to get a general solution, and it is very likely that it is being used to overfit the
LDA training data.

LDA is not an obvious choice for feature selection, but in the two class case of com-
bining similarity evidence it appears that the method offers an instrument for identifying
dimensions which have an undesirable effect on fusion. By eliminating every feature with a
negative projection coefficient, we obtain a lower dimensional LDA projection vector with
all projection coefficients positive. This projection vector is not using many of the origi-
nal similarity features, and therefore performs the role of an LDA-based feature selection
algorithm.

2.5.4 Results on XM2VTS of the LDA-based feature selection approach

Our experiments using this approach were conducted using the XM2VTS database [2], ac-
cording to the Lausanne protocol [14] in both configurations.

For verification experiments this database was divided in three different sets: training
set, evaluation set (used to tune the algorithms) and test set. We have 3 different images
for every client training in Configuration I of the Lausanne protocol and 4 images for every
client training in Configuration II.

An important consideration about the two different configurations is that Configuration
I is using the same sessions to train and tune the algorithms, so the client attempts are
more correlated than in Configuration II, where the sessions used to train the algorithms
are different than those used to tune the algorithms. This means that Configuration I is
likely to lead to an intrinsically poorer general solution.

In tables 3 and 4 we show the single decision stage performance with and without the
LDA-based feature selection. If we compare the results in both tables we can clearly draw
two main conclusions:

• The TER is lower using the LDA-based feature selection for both MLP and LDA deci-
sion fusion functions in both configurations in the test set but higher in the evaluation
set.

• The difference between the FAR and FRR in the test set performance is lower for both
configurations and decision fusion functions.

These two suggest that the LDA-based feature selection has enabled us to construct a
solution exhibiting better generalisation properties than the one obtained when using all the
features together. The stability of the operating point is also better.

On the other hand, in tables 5, 6 and 7 we have the overall system performance with
and without the LDA-based feature selection algorithm. If we compare the results in tables
5 and 6, where the decision fusion function is LDA (without and with the feature selection
respectively) we obtain a degradation of 5.42% in TER when using the feature selection
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Configuration I Configuration II
FAR(%) FRR(%) FAR(%) FRR(%)

Ev. Set 3.83 3.83 3.20 3.19
LDA Ts. Set 7.13 4.42 5.79 5.63

Ev. Set 0.90 0.94 0.76 0.75
MLP Ts. Set 2.21 7.42 2.50 9.50

Table 3: Single template performance with global thresholding and without feature selection

Configuration I Configuration II
FAR(%) FRR(%) FAR(%) FRR(%)

Ev. Set 4.39 4.39 3.87 3.87
LDA Ts. Set 6.79 4.67 5.44 5.44

Ev. Set 2.89 2.89 2.15 2.19
MLP Ts. Set 4.24 5.00 3.18 6.63

Table 4: Single template performance with LDA-based feature selection and global thresholding

in Configuration I and an improvement of 6.71% in TER when using feature selection in
Configuration II.

However, if we use the MLP as the decision fusion function trained with the LDA-based
feature selection features, as we can see in table 7, the results in Configuration I are much
better. If we do not use feature selection prior to the MLP based similarity score fusion,
the results (not listed in this paper) are much worse than those listed in table 7 for both
configurations, as could be expected from the highly unbalanced results shown in table 3 for
the MLP fusion method.

The overall results in Configuration I should not be considered as a reflection of the
generalization power of our fusion algorithms, as the poor generalization behavior is intrin-
sically imposed by the test protocol. Therefore it is reasonable to argue that the LDA-based
feature selection allow us to improve the overall system performance.

Finally, the LDA-based selected features for both configurations can be seen super im-
posed over the face of one of the subjects of the database (for illustration purposes) in figure

Configuration I Configuration II
FAR(%) FRR(%) FAR(%) FRR(%)

Ev. Set 1.48 1.43 0.75 0.75
LDA Ts. Set 3.39 3.25 1.92 2.25

Ev. Set 1.36 1.33 0.50 0.50
MLP Ts. Set 3.30 2.75 1.26 3.25

Table 5: Multiple template performance using LDA without feature selection for similarity score

fusion, LDA and MLP as decision fusion functions and client specific thresholding
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Configuration I Configuration II
FAR(%) FRR(%) FAR(%) FRR(%)

Ev. Set 1.66 1.67 0.75 0.75
LDA Ts. Set 3.75 3.25 1.89 2.00

Ev. Set 1.83 1.83 0.50 0.50
MLP Ts. Set 4.65 3.00 1.05 2.75

Table 6: Multiple template performance using LDA with feature selection for similarity score

fusion, LDA and MLP as decision fusion functions, and client specific thresholding

Configuration I Configuration II
FAR(%) FRR(%) FAR(%) FRR(%)

Ev. Set 1.22 1.17 0.61 0.50
LDA Ts. Set 2.37 2.25 1.07 5.00

Ev. Set 1.11 1.00 0.52 0.50
MLP Ts. Set 2.20 2.25 0.93 8.00

Table 7: Multiple template performance using LDA based feature selection, MLP as similarity

score fusion function, LDA and MLP as decision fusion functions and client specific thresholding

8. Note that the number and location of the selected features (40 in the configuration I
and 44 in the configuration II) are very similar in both configurations, and even the values
(represented in the figure by the window brightness) of the coefficients are also very similar.
The stability and consistency of the features identified by the proposed algorithm is very
encouraging. Moreover, the number of selected features is small enough to allow a high re-
duction in the computational complexity in the verification phase, and hence an important
reduction (nearly a 60%) in the verification time.

2.6 Accuracy-based node selection

In the previous section, we have seen an approach to select nodes from a rectangular grid
based on a Linear Discriminant Analysis. This kind of analysis is possible due to the fact
that a given node represents the same facial region in every image. When locating points
through Ridges and Valleys sampling, we can not assume this, so we should use another

Figure 8: LDA-based selected features for configuration I (left) and configuration II (right). The

brightness is proportional to the LDA projection vector coefficient
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method in order to select the most discriminative nodes.
The problem can be formulated as follows: given a training image for client C, say Itrain,

a set of images belonging to the same client
{
Ic
j

}
and a set of impostor images

{
Iim
j

}
, we

want to find which subset, P̂ ⊂ Ptrain, is the most discriminative. As long as each point �pi

from Ptrain has a correspondent node in every other image (client or impostor, say Itest),
we measure the individual classification accuracy of its associated jet J�pi

, and select the
locations which achieve the best authentication rates, i.e., the ones with a Total Error Rate
(TER) below a threshold τ . Finally, only a subset of points, P̂ , is chosen per image, and
the score between Itrain and Itest is given by:

S = fn̂

{
< J�pi

,J�qξ(i) >
}

�pi∈P̂
(22)

This method can be applied also to select nodes (and their respective features) from a
rectangular grid.

2.6.1 XM2VTS results of the accuracy-based selection approach

We performed experiments over the XM2VTS database following the Lausanne protocol on
both configurations I and II. The accuracy-based selection approach was applied to:

• Rectangular grid nodes

• Ridges and Valleys nodes

The Total Error Rates over the test set are presented in table 8

Configuration I Configuration II
TER(%) TER(%)

Rectangular 4.93 2.25

Ridges 3.61 2.09

Table 8: Accuracy-based selection results for the Ridges and Valleys sampling and the rectangular

grid.

3 Speaker Recognition approach

The speaker recognition system we use in our multi-biometric authentication system is a
text independent speaker verifier based on GMM [16]. The acoustic parameters that we use
are the Mel Frequency Cepstrum Coefficients (MFCC), their Delta and Acceleration and
the Energy. The acoustic front end details can be found in [17] and [18]. A voice activity
detector (VAD) based on energy is used to keep the voice frames.

The verification system is based on the likelihood ratio detection implemented by means
of the GMM-UBM approach described in [19]. The verification problem is addressed as a
hypothesis test between:
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Figure 9: Speaker verifier system results on BANCA with the MC, G and P experimental
protocol

• H0: The speech utterance Y comes from the speaker S.

• H1: The speech utterance Y does not come from the speaker S.

If we know the likelihood functions P (Y |Hi) then the optimal hypothesis test is:

P (Y |H0)
P (Y |H1)

{
≥ θ accept H0

< θ do not accept H0
(23)

In this approach the hypothesis H0 is mathematically represented by a user specific
gaussian mixture model, denoted by MS , while the alternative hypothesis is represented by
another gaussian mixture model denoted as Universal Background Model (UBM), denoted
as MU . The UBM is a gaussian mixture model trained using voice segments from many
different speakers. The GMM is initialized using the LBG algorithm and the training is
performed using the EM algorithm. The user models are obtained adapting the UBM to the
speaker’s voice by means of the MAP adaptation. The logarithmic form of the hypothesis
test is used due to numerical reasons:

log P (Y |H0) − log P (Y |H1) ≥ log θ ⇔ accept H0 (24)

3.1 Results on BANCA DataBase

We have evaluated our speaker recognition system on the BANCA database with several
configurations and all the protocols. We have used only the BANCA universal background
model files to train the UBMs used in these experiments. Here we show the results on the
protocol MC, P and G.

4 A framework for distributed audiovisual biometric

authentication

In this section we summarize the main issues involved in the development of a framework
for distributed biometric authentication. The algorithmic core of the framework is based
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on the face and voice verification algorithms explained in sections 2 and 3, but the whole
framework has been developed to easily accommodate other biometric traits using BioAPI
compliant capturing devices and integrating the corresponding verifiers.

4.1 Models for distributed biometric authentication

Any biometric recognition procedure can be divided into a number of stages:

1. Acquisition of a biometric sample (device-dependent processing)

2. Extraction of a biometric template (signal processing: pre-processing, feature extrac-
tion and user-template creation)

3. Biometric template matching (pattern recognition processing).

The third of these stages usually requires prior training of user models and thresholds
set up in an enrollment process whenever a new user is added to the system. The matching
process may be based on identification (the biometric template is matched against all the user
templates with authorization to access the system) or verification (the biometric template
is matched only against the claimed user’s stored biometric template). Verification is the
most common matching mode for restricted access applications and corresponds to the wider
security concept of identity authentication.

When dealing with distributed biometric authentication in client-server architectures, the
three processes described above will provide different configurations depending on where the
processes are executed. Although it is obvious that the acquisition process must be executed
on the client side, there are three options remaining for extracting biometric templates and
matching user templates: both these processes are performed in the client machine (pull
model); the biometric template is extracted on the client side, sent to the server and matched
there against the user templates (push model); or both processes are performed in the server
(a variant of the push model). The pros and cons of these three possible configurations are
as follows:

1. Authentication on the client side is very inconvenient. Computationally demanding
operations might not be possible in the client machine, and identification mode is not
feasible for medium- to large-size clients. There is also a severe security handicap,
as performing all the network authentication processes on the client side is much
more prone to tampering due to unsecured client machines. Note that verification
requires the transaction of the claimant template from the server database to the
client machine over a secure connection to avoid hacker interception. If privacy really
matters, a smart-card can be used to store user biometric templates, thereby avoiding
holding biometric data in a centralized server and sending it through a network. This
solution is, nowadays, a very promising technological field because it combines the
three authentication premises: what the user knows, possesses or is [20].

2. Biometric template extraction on the client side and template matching on the server
side have the drawback of placing most of the computational burden on the client
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side (pre-processing and feature extraction usually loads CPU and memory more than
the matching process) and these processes are executed in a non-secure machine be-
fore the extracted biometric template is sent through a secure connection. Moreover,
the authentication process itself is performed by the server, which can be properly
protected.

3. Both biometric template extraction and authentication on the server side have the
advantage of placing the computational load on the server side, where they can be
run on powerful computers. Consequently no biometric template is sent through the
network, although the acquired biometric sample is. Even though encryption is also
needed for this transaction, it is important to note that some biometric samples do
not constitute secret information (the face and voice of a client can be easily recorded,
fingerprints are left on many objects and can be recovered, signatures can be easily
photographed, etc.). Therefore, this data is less dangerous in a hacker’s hands than
a biometric template ready to be used in an authentication system. Finally, from the
versatility and security point of view a secure server is a better configuration, as it
places the bulk of the system on the server side and leaves the client side - the weakest
point in the security chain - with the sole responsibility of acquiring the biometric
samples. The disadvantage of this configuration is related to a wider bandwidth for
the client-server connection.

The framework we have developed is based on the third of the above configurations.
We define a Biometric Client Application in charge of multi-biometric sample acquisition,
encryption and secure transaction; a Biometric Authentication Module with a Central Au-
thentication Service on the server side that is in charge of extracting the biometric template,
and matching and checking access privileges. The design is based on existing biometric stan-
dards - such as BioAPI and XCBF - so as to ensure interoperability and security. Details of
this framework are out of the scope of this paper and can be read from [4].

4.2 Success of a distributed biometric authentication system

The performance of different biometric authentication systems reported in the scientific lit-
erature are very data-dependent and so are only really meaningful for specific tasks, specific
populations and a specific acquisition set-up. Successful deployment of a distributed bio-
metric system needs improvements in relation to certain technological and social issues.
Referring merely to technological issues, there is much work to be done in regard to robust-
ness against concurrent variability sources in the acquisition process, such as: i)different
third party capturing devices even for the same biometric feature; ii)uncontrolled remote
scenarios (noise, illumination, device configuration, user approach to biometrics or even
technology, etc.); and iii)effects of ageing or wealth.

Even when some of the large reference datasets have quite realistic acquisition conditions,
none of them has been designed to represent all the variability of a web-based large-scale
application. In this sense, results of biometric verification algorithms over publicly available
databases, such those shown in the previous sections of this paper, have to be understood
on the limitations of the database samples.
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Using a framework described in [4] it is possible to distribute the capturing process over
the web and to build a dataset very useful for testing state-of-the-art biometric algorithms.
The acquisition tool has been developed for audiovisual features, more challenging than other
biometric features because intra-class and inter-class variability conditions are greater due
to: i)a huge variety of deployed webcams (quality, resolution, driver features, built-in micro-
phone, focal length, etc.), compared to the small set of deployed fingerprint, palmprint, iris,
retina or signature acquisition devices; ii) a huge variety of acquisition scenarios: acquisition
and background noise (audio and image noise), illumination, distance to the webcam and
microphone, head pose, emotion and expression changes, accent and language, etc. Other
biometric features can only be registered under more constrained scenarios, usually imposed
by the acquisition device. And, finally, ii) greater variability in these biometric features over
time (throat illness, beard, glasses, hair, ageing, etc).

5 Conclusions and future work

The main conclusions of this paper are related to the advances on face verification algorithms
using local matching approaches. Results over the XM2VTS and BANCA database show
that a discriminative selection or weighting of local similarities of texture information yield
higher improvement of correct classification than including shape distortion information.
The tests on LDA-based fusion using a global threshold show very promising results if com-
pared to the best results of all the tests, obtained using accuracy-based node selection with
user-specific thresholds. In general, a global threshold is preferred to user specific thresholds
because the system will be less database-dependent and performance should not decrease
too much on actual running-time. We have not performed rigorous tests on audiovisual
performance using the distributed system presented in this paper. Most of the times we
just combine hard decisions using logical operators or switch off one of the verifiers in bad
illumination conditions or noisy environments.

The future lines of research are related to increase robustness against realistic capturing
conditions. We plan to use our framework for capturing a realistic audiovisual database
for desktop-based internet secure access. We are developing pose-correction algorithms for
collaborative environments (no dramatic profiles shown to the webcam) and also developing
fusion techniques for mixing voice and face soft decisions.
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Mateo, Oscar W. Márquez-Flórez: “An open framework for distributed biometric authen-
tication in a web environment”, submitted to Annals of Telecommunications.

Pattern Recognition : Progress, Directions and Applications 199



[5] Wiskott, L., Fellous, J.M., Kruger, N., von der Malsburg, C. “Face recognition by Elastic
Bunch Graph Matching.” IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(7), 775-779, 1997
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Abstract

We present a heuristic method for learning error correcting output codes
matrices based on a hierarchical partition of the class space that maximizes a
discriminative criterion. To achieve this goal the optimal codeword separation
is sacrificed in favor of a maximum class discrimination in the partitions. The
creation of the hierarchical partition set is performed using a binary tree. As
a result, a compact matrix with high discrimination power is obtained. Our
method is validated using the UCI database, and applied to a real problem, the
classification of traffic sign images.

Keywords: Multiple classifiers, Multi-class classification, Visual Object Recognition.

1 Introduction

The task of supervised machine learning can be seen as the problem of finding an
unknown function C(x) given the training pair set of examples < xi, C(xi) >. C(x)
is usually a set of discrete labels. For example, in face detection C(x) is a binary
function C(x) ∈ {face, non-face}, in optical digit recognition C(x) ∈ {0, . . . , 9}.

In order to address the binary classification many techniques and algorithms have
been proposed: decision trees, neural networks, large margin classification techniques
, etc. Some of those methods can be easily extended to multiclass problems. How-
ever, some other powerful and popular classifiers, such as AdaBoost [3] and Support
Vector machines , do not extend to multiclass easily. In those situations, the usual
way to proceed is to reduce the complexity of the multiclass problem into multiple
simpler binary classification problems.

∗This work was supported by FIS: PI031488, and FIS network: G03/185 of MEC.
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There are multiple approaches for reducing multiclass to binary classification
problems. The simplest approach considers the comparison between each class
against all the others. This produces Nc binary problems, where Nc is the number
of classes. Other researchers suggested the comparison of all possible pairs of classes
[4], resulting in a Nc(Nc−1)/2 set of binary problems. Dietterich et al. [6] presented
a general framework in which classes are classified according to a set of binary error
correcting output codes (ECOC). In this approach the problem is divided in n bi-
nary classification subproblems, where n is the error correcting output code length
n ∈ {Nc, . . . ,∞}. The output of all classifiers must be then combined (traditionally
using Hamming distance). Dietterich approach was improved by Allwein et al. [5]
by introducing an uncertain value in the ECOC design and exploring alternatives
for combining the resulting outputs of the classifiers. In particular, they introduced
loss-based decoding as a way of combining the classifiers. Recently, Passerini et al [2]
proposed a new decoding function that combines the margins through an estimate
of the class conditional probabilities.

Though most of the improvements in error correcting output codes have been
made in the decoding process, little attention has been paid to the design of the codes
themselves. Crammer et al. in [1] were the first authors to report improvements
in the design of the codes. However, the results were rather pessimistic since they
proved that the problem of finding the optimal discrete codes is computationally
intractable since it is NP-complete.

It is our purpose in this paper to reopen the problem of discrete ECOC design by
proposing an heuristic method that not simply gives an efficient and effective method
for ECOC design but leads to compact codes of Nc − 1 bits (binary problems).

The method we propose renders each column of the output code matrix to a
problem of finding the binary partition that divides the whole set of classes so that
the discriminability between both sets is maximum. The criterion used for achieving
this goal is based on the mutual information between the data of each set and its
class label. Since the problem is defined as a discrete optimization process, we
propose to use floating search methods as sub-optimal search procedures for finding
the partition that maximizes the mutual information. The whole ECOC matrix is
created with the aid of an intermediate step formulated as a binary tree. With this
formulation we ensure that we decompose the multiclass problem into Nc−1 binary
problems.

The paper is divided in the following sections: section 2 provides a brief intro-
duction to error correcting output codes, section 3 describes the discriminant ECOC
technique as well as the theory of the methods involved in its creation. Section 4
shows empirical results of the proposed method and section 5 concludes the paper.
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2 Error correcting output codes

Error correcting output codes were born as a general framework for handling multi-
class problems [6]. The basis of this framework is to create a codeword for each class
(up to Nc codewords). Arranging the codewords as rows of a matrix they define the
”coding matrix” M , where M ∈ {−1, 1}Nc×n, and n is the code length.

From the point of view of learning, the matrix M is interpreted as n binary
learning problems, one for each column. Each column defines a partition of classes
(coded by +1,-1 according to their class membership). As a result of the outputs of
the n binary classifiers a code is obtained for each data point in the test set. This
code is compared with the base codewords of each class defined in the matrix M ,
and the data point is assigned to the class with the ”closest” codeword.

A generalization of this process is provided in [5]. The main difference in terms
of the coding matrix is that it is taken from a larger set M ∈ {−1, 0, 1}Nc×n. In
this approach some entries in the matrix M can be zero indicating that a particular
class is not significative for a given classifier. In practical applications this means
that the classifier omits all examples for which M = 0.

Table 1: Example of the M matrices for a 4-class problem. (a) 1-against-all matrix
(b) all-pairs matrix.

h1 h2 h3 h4
C1 +1 -1 -1 -1
C2 -1 +1 -1 -1
C3 -1 -1 +1 -1
C4 -1 -1 -1 +1

h1 h2 h3 h4 h5 h6
C1 +1 +1 +1 0 0 0
C2 -1 0 0 +1 +1 0
C3 0 -1 0 -1 0 +1
C4 0 0 -1 0 -1 -1

(a) (b)

Table 1 provides two examples of M matrices applied to a four class problem.
Ci is the class label and hi is the binary classifier (hypothesis). In the case of one-
against-all classification, M is a Nc × Nc matrix in which all diagonal elements are
set to +1 while the rest are set to -1. In the case of all-pairs classifiers, M is a
Nc × Nc(Nc − 1)/2 matrix in which each column is set to zero except for a given
pair. One of the pair elements is set to 1 and the other to -1.

Although both strategies (one-against-all and all-pairs) address the problem of
multi-class from binary problem, Allwein et al. showed in [5] that all-pairs outper-
formed the one-against-all strategy. However, the complexity of all-pairs is superior
to the one-against-all one.

Several other heuristics for creating ECOC matrices are proposed in [6] such as
exhaustive codes, sparse matrix coding and compact matrix coding. All those codes
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are defined independent of the data set to be classified satisfying two properties:

• Row separation. Each codeword should be well-separated in Hamming dis-
tance from each of the other codewords.

• Column separation. Each column hi should be uncorrelated with all the
other columns hj , j = i. This property is achieved if the Hamming distance
between columns is large. The largest distance is obtained when compared
with the complement of each column.

As we mentioned before, the codeword resulting of applying the different hy-
potheses to a given instance x should be combined. If we denote f(x) = (f1(x), . . . , fn(x))
the vector of predictions for the sample x, the combination of the n outputs assigns
one of the Nc labels. The simplest way of decoding a vector f(x) is the Hamming
decoding. This method looks for the minimum distance dH(M(r, .), f(x)) between
the prediction and the codewords:

ŷ = argmin
r

(
dH(M(r, .), f(x))

)
, dH(M(r, .), f(x)) =

n∑
s=1

(1 − sign(M(r, s)fs(x))
2

)

where sign(z) is +1 if z > 0, −1 if z < 0 and 0 otherwise. M(r, .) designates the
codeword r in the matrix and ŷ ∈ {1, . . . , Nc} is the predicted label.

The next generalization made in ECOC comes from Crammer et al. [1]. In
their work, they change the discrete values of the ECOC matrix for continuous
ones. Thanks to this change they are able to find a method for creating application
dependent ECOC matrices and solve an, otherwise, NP-complete problem.

Our work reopens the problem of the design of the discrete coding matrix. The
main difference between our work and the rest is that while the rest of the discrete
approaches ignores completely the structure of the given problem, we create the
coding matrix according to the particularities of the data we are dealing with. In
order to achieve our goal we must relax the conditions of row and column separation.
We trade the optimality in the codewords for maximum class separation in the
partitions.

3 Discriminant ECOC

Discriminant ECOC is born as a result of three processes: first, a heuristic for the
design of the ECOC matrix; second, the search for high performance classification
using the minimum number of classifiers; and third, a tool to describe the classifi-
cation domain in terms of class dependencies. We have seen in the previous section
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Table 2: CCBT algorithm
[Initialization:]

Root node : N0

N0.set = {Ci |∀i ∈ {1, . . . , Nc}}.
Create a list of nodes LN = {N0}

Step 1. Nt = first(LN ) Remove the first node of LN

Step 2. Use floating search in conjunction with fast quadratic
mutual information to find the most discriminant partition
Sj = {Ci} ⊂ Nt.set, j ∈ {1, 2}.

Step 3. Create a node for each partition set < N1, N2 > and fill
the field ”set” with the partition set labels, Sj .

Step 4. Add those nodes to the list of nodes LN = LN∪{N1, N2}
if length(Nk.set) > 1

Step 5. Go to step 1 if there are still nodes in the list.

that one-against-all and all-pairs classification strategies are the classic examples for
the binary and ternary valued ECOC design, respectively. Our approach relaxes
the strong assumption of the one-against-all classification approach by allowing the
classes to organize in maximally discriminant sets while keeping the number of clas-
sifiers low. On the other hand, the all-pairs approach considers each class unrelated
to the rest. It is our desire to exploit the inner dependencies among classes in the
classification domain. As a result of these specifications, we define the discriminant
ECOC.

3.1 Design of the Discriminant ECOC

The goal of this work is to find a compact multiclass (in terms of codeword lenght)
codeword matrix M with high discriminative power. To achieve this goal, we will
use as an intermediate step a Column Code Binary Tree (CCBT) where each node
of the tree defines a partition of the classes and therefore a column of the matrix
M . The partition at each node must satisfy the condition to be highly separable
in terms of discrimination. To achieve this goal the partition obtained is the result
of the maximization of the quadratic mutual information between the data and the
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Figure 1: Example of conversion from the binary tree to the ECOC matrix.

labels of the partition. The algorithm used for the maximization is the floating
search method, that will be introduced in the next subsection.

Therefore, the general algorithm to find the matrix M is as follows,

General steps

• Create the Column Code Binary Tree

– Recursively, find the most discriminant partition of the parent
node (Ni) class set using floating search with fast quadratic
mutual information criterion.

• Assign to the column i of matrix M the code of node Ni of the
tree:

M(:, i) = Ni.code

Table 2 details a possible algorithm for creating the CCBT. The tree is a mean
to find the codewords. The final matrix M is composed by the codes obtained at
each node (except for the leaves). Those codes would be placed as columns in the
coding matrix (M(., i)). To create each column code we use the relationship between
a node and its child nodes. The rules to create the column code are the following:

• All the elements in the column code M(., i) related to a class Cr not appearing
in the set of classes of the node are set to zero. M(r, i) = 0 if Cr /∈ Ni.set

• The elements in the column code of the node related to the classes of one of the
two child nodes of the given node are set to +1. M(r, i) = +1 if Cr ∈ N1

i .set

• The remaining elements are set to −1. M(r, i) = −1 if Cr ∈ N2
i .set
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Note that the number of n columns coincides with the number of the intermediate
nodes. It is easy to see that in any binary tree the number of intermediate nodes is
Nc − 1 given that the number of leaves is Nc. Therefore, by means of the CCBT we
can assure that the codeword will have length Nc − 1.

Figure 1 shows an example of a CCBT for 8 classes. On the right side of the
figure, we show the resulting discriminant ECOC matrix. The white squares are
+1, black squares are -1 and gray squares have 0 value. Observe, for instance, that
column N5 corresponds to the partition {c5, c6} and {c2}. On the other hand,
if we look at the rows of the matrix, the codeword associated to class 6 (c6) is
{1, 0,−1, 0,−1, 0, 1}.

As a result of this process the discriminant ECOC matrix is created. From a
more general point of view, the creation of the ECOC matrix is one of the parts
involved in the multiclass classification technique. The other two remaining parts to
be defined are the classification technique and the decoding strategy. In this paper we
have chosen AdaBoost [3] as a classification technique, since it is becoming a state-
of-the-art binary classification technique (that has inherent problems to extend to
multiclass classification). The chosen decoding metric is the Euclidean distance to
the codewords. We have seen that Euclidean and Hamming distance have the same
performance for classic M matrices. However, our method does not necessarily
fulfill the row and column separation properties described in the former section.
This is due to the fact that similar classes are translated into closer codewords. In
this scenario, Hamming distance is not well suited to handle those variations and
alternative decoding metrics have to be used.

Recalling the algorithm described in table 2, a maximization process is needed
to obtain the partition of the classes in two sets. Although looking for the best
partition set requires of an exhaustive search among all possible partitions, due
to the impracticability of this endeavor a suboptimal strategy must be used. The
strategy chosen is the floating search method. The following subsection details this
method that allows the problem to be computationally feasible.

3.2 Floating Search Methods

The Floating search method [8] was born as a suboptimal search method for alle-
viating the prohibitive computation cost of exhaustive search methods in feature
selection. This method lies in the family of sequential search methods where one
of the most favored search procedures for its effectiveness is the plus-l take away-r
method.

The heuristic basis and the main constraint of most sequential methods are that
the search criterion has to be monotonic. This implies that when adding a new item
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the search criterion to be maximized does not decrease. However, this condition
does not always hold in many practical cases. In particular, researchers present
several partially successful approaches to cope with this problem using Montecarlo
approaches or genetic algorithms [7].

Pudil et al. introduced in [8] a family of suboptimal search algorithms called
floating search methods that resulted effective in high dimensional problems. Fur-
thermore, these methods allowed the search criteria to be non-monotonic, thus solv-
ing the main constraint of many sequential methods. This family of methods is
directly related to the plus-l take away-r algorithm. However, the first approach
differs from plus-l take away-r algorithm in the fact that the number of forward and
backtracking steps are not decided beforehand.

Floating search methods can be described as a dynamically changing number of
forward steps and backward steps as long as the resulting subsets are better than
the previously evaluated ones at that level. In this sense this method avoids nesting
effects that are typical of sequential forward and backward selection while equally
being step-optimal since the best (worst) item is always added (discarded) to (from)
the set. Since backtracking is controlled dynamically, no parameter setting is needed.

The algorithm presented in table 3 describes the top-down approach which is
called Sequential Forward Floating Search (SFFS) algorithm. This one begins with
an empty set X0 and is filled while the search criterion applied to the new set
increases. The most significant item with respect to Xk is added at each inclusion
step. In the conditional exclusion step, the worst item is removed if the criterion
keeps increasing. In our case Y is the set of classes to be partitioned.

In our approach, the criterion used for designing this partition is related to the
discriminability between the class sets. We use mutual information to that effect.
Our goal is to maximize the mutual information between the data in the sets and
the class labels of the partitions.

3.3 Fast Quadratic Mutual Information

Mutual information (MI) is a well known criterion to compute the amount of infor-
mation that one random variable tells about another one. In classification theory,
this measure has been shown to be optimal in terms of class separation [11] [10], al-
lowing to take into account high-order statistics. MI also bounds the optimal Bayes
error rate. However, mutual information is not widely used due to the difficulties
derived from its computation.

Though evaluating MI in low dimensional spaces (small number of random vari-
ables) can be feasible through histograms, it can not be easily accomplished in high
dimensional ones due to sparsity of data. However, Principe et al. [10] presented a
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Table 3: SFFS Algorithm

Input:

Y = {yj |j = 1..D}//Available items//

Output:

Xk = {xj |j = 1..k, xj ∈ Y }, k = 0, 1, ..D

Initialization:

X0 = {∅}; k = 0

Termination:

Stop when the criterion does not increase J(Xk) ≈
J(Xk−1)

Step 1 (Inclusion)

x+ = argmax
x∈Y −Xk

J(Xk ∪ x)

Xk+1 = Xk ∪ x+, k = k + 1

Step 2 (Conditional exclusion)

x− = argmax
x∈Xk

J(Xk − x)

if J(Xk − x−) > J(Xk−1) then
Xk+1 = Xk − x−, k = k + 1
go to Step 2

else
go to Step 1

feasible method for computing entropy estimators using Renyi’s formulation when
coupled with Parzen window density estimation. Based on this method, they heuris-
tically obtained a measure for mutual information.

This work has been recently modified and extended by Torkkola et al. [11]
by relating mutual information to divergence measures. Using this extension the
authors provide the base for computing ”quadratic mutual information” in a simple
and fast way.
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Let x and y represent two feature vector sets where x = {xi ∈ �d} and y =
{yi ∈ �d} and p(x), p(y) are their respective probability density functions. The
mutual information measures the dependence between two probability distributions
and is defined as follows,

I(x,y) =
∫ ∫

p(x, y)log(
p(x, y)

p(x)p(y)
)dxdy (1)

Observe that mutual information is zero if p(x,y) = p(x)p(y). It is important to
note that equation (1) can be seen as a Kullback-Leibler divergence,

K(f, g) =
∫

f(y)log(
f(y)
g(y)

)dy

where f(y) is replaced with p(x, y) and g(y) with p(x)p(y).
Alternatively, Kapur et al. argued in [9] that if our goal is to find a distribution

that maximizes or minimizes the divergence, several axioms can be relaxed and
the resulting divergence measure is related to D(f, g) =

∫
(f(y) − g(y))2dy. It

was proved in [11] that maximizing K(f, g) is equivalent to maximizing D(f, g).
Therefore

IQ(x,y) =
∫ ∫

(p(x,y) − p(x)p(y))2dxdy (2)

The estimation of the density functions can be done using the Parzen window
estimator. In that case, when combined with Gaussian functions we can use the
following property: Let N(y, Σ) be a d-dimensional gaussian kernel, it can be shown
that, ∫

N(y − a1,Σ1)N(y − a2, Σ2) = N(a1 − a2, Σ1 + Σ2)

Observe that the use of this property avoids the computation of one integral function.
Threrefore, given Ny data points, p(y) and p(x|y) can be written as,

p(y) =
1

Ny

Ny∑
i=1

N(y − yi, σI), p(x|y) =
1

Ny

Ny∑
j=1

N(x − yj , σ
2I)

Let us define the notation for the practical implementation of IQ: Assume that
we have N samples in the whole data set; Jp are the samples of each class cp; NC

stands for the number of classes; xl stands for the l-th feature vector of the data
set and xpk is the k-th feature vector of the set in class cp. Expanding equation (2)
and using a Parzen estimate with a symmetric kernel with width σ, we obtain the
following equations,

IQ(x,y) = VIN + VALL − 2VBTW
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where,

VIN =
∫ ∫

p(x,y)2dxdy =
1

N2

NC∑
p=1

Jp∑
l=1

Jp∑
k=1

N(xpl − xpk, 2σ2I),

VALL =
∫ ∫

p(x)2p(y)2dxdy =
1

N2

NC∑
p=1

(
Jp

N
)2

N∑
l=1

N∑
k=1

N(xl − xk, 2σ2I), (3)

VBTW =
∫ ∫

p(x,y)p(x)p(y)dxdy =
1

N2

NC∑
p=1

Jp

N

N∑
l=1

Jp∑
k=1

N(xl − xpk, 2σ2I)

In practical applications, σ is set to the half of the maximum distance between
samples as proposed by Torkkola in [11].

4 Experimental Results

In this section we describe and discuss the experiments we have performed with
natural data from two different environments. First, we validate the approach using
data from the UCI repository. Afterwards, we apply this approach to a real problem:
traffic sign recognition.

4.1 Validation in UCI database

To validate our approach we begin with an analysis using the standard UCI database
[12]. This database is a well-known database for evaluation and comparison of
classifiers. We have chosen a very popular binary learner for these experiments:
AdaBoost [3] with 40 weak learners per strong classifier (hj). We have selected from
the UCI database the following datasets: Iris, Wine, Balance-Scale, New-Thyroid,
Dermatology, Glass, Ecoli, Yeast, Vowel and Abalone. The properties of the datasets
are described in table 4. The experiments have been performed using a 10 fold cross-
validation strategy.

We tested 3 different types of output codes: one-against-all, all-pairs and dis-
criminant ECOC. We have decided to use only these codes because of different
reasons: first, we choose all-pairs to compare because in [5], the authors showed
that all-pairs is one of the most discriminant codes, better than sparse and dense
code approaches. Second, we choose to compare with one-against-all because it is
the only coding reported in literature [5], up to our knowledge, comparable in terms
of number of classifiers needed in the multiclass classification process.
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Table 4: Description of the datasets used in the experiments
Problem #Examples #Attributes #Classes

iris 150 4 3
glass 214 9 7
wine 178 13 3
ecoli 336 8 8

balance-scale 625 4 3
yeast 1484 8 10

new-thyroid 215 5 3
vowel 998 10 11

dermatology 366 34 6
abalone 4177 8 28

Table 5: Mean error rate for different UCI datasets.
Data Set , Method DECOC 1 vs 1 1 vs All

Iris 4.29% 4.50% 5.40%
Glass 25.65% 27.74% 35.96%
Wine 4.94% 4.42% 6.72%
Ecoli 19.15% 17.38% 23.30%

Balance-Scale 10.12% 8.77% 7.95%
Yeast 47.0% 46.35% 48.24%

New-Thyroid 5.23% 3.32% 6.23%
Vowel (general) 20.10% 18.16% 51.81%

Dermatology (Hamming) 11.78% 6.20% 11.94%
Dermatology 6.76% 6.90% 11.72%
Vowel (T-T) 60.36% 52.59% 76.40%

Abalone 76.01% 74.05% 99.37%
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2: Comparison of the recognition rate statistical behavior among DECOC,
all-pairs (1v1) and one-against-all (1vall).
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Figure 3: The 32 different signal classes to recognize.

In order to compare the methods we choose the mean error rate (displayed in
table 5) and the maximum, minimum and standard deviation of the recognition
rate of the classification methods (illustrated in figure 2). In the table, discriminant
ECOC, one-against-all and all-pairs are abbreviated using ”DECOC”, ”1 vs all” and
”1 vs 1”, respectively. We can see that our method outperforms the one-against-all
approach easily, and in most of the databases is comparable to all-pairs. However,
our method just needs Nc − 1 classifiers instead of Nc(Nc − 1)/2 that derives from
the all-pairs approach. This is a very significant gain when the number of classes
increases. For instance, in the abalone dataset (we have 28 classes), we need to train
378 classifiers in the all-pairs approach. However, we just need 27 in our approach.
This allows our approach to be used in applications where time is a crucial constraint,
such as on-line applications, real time or near real time applications and transductive
learning, where retraining is needed.

4.2 Traffic sign recognition

The proposed approach was used in an online traffic sign detection and recognition
project for guided navigation. In particular, we are concerned with the traffic sign
recognition part. In this problem we have a set of 32 different signs that have to be
distinguished. An example of each class is illustrated in figure 3.

We used the three different approaches to compare the performance in this prob-
lem. The binary base classifier was AdaBoost. The training set was extracted from 8
car drive records at different locations, highways and local roads. The total number
of examples sums 2217. This problem has an additional difficulty since the number
of samples for each class is very different. This means that we are in front of an im-
balanced class problem with classes clearly under-represented. Each extracted sign
image measures 35 × 35 pixels. The data has not been preprocessed and has been
used raw data as input to our learners. We have used two different car drive records
(dataset1 and dataset2, corresponding to a highway and a local road, respectively)
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Table 6: Error rates for traffic sign recognition.
Test sequence DECOC 1 vs 1 1 vs All

dataset1 9.38% 13.14% 27.23%
dataset2 12.68% 15.85% 29.17%

as test sets. The total number of traffic signs in the test records sums 600. The
results obtained in our experiments are summarized in table 6.

We can observe that the behavior of the three methods follows the guidelines
obtained when we validated the method using the UCI datasets. However, in this
case our method improves not only the one-against-all approach but also the all-
pairs. This success is reinforced by the fact that our approach uses only 31 classifiers
instead of the 496 classifiers used by the all-pairs approach, thus increasing the
computational efficiency of the whole process, training and test.

The improvement of our method over the all-pairs one is due to the fact that
our method is able to generalize better than all-pairs in front of classes with a small
number of samples. In this case all-pairs approach fails because of the imposing
to find the class boundary. However, since our partitions gather together several
classes, this problem does not affect.

Figure 4 shows the discriminant ECOC matrix for the signal recognition appli-
cation. If one analyzes the resulting partitions created by our method, one can see
that several groups make sense in terms of perceptual discrimination. Let us take for
instance the partitions created to train the seventh column. As we observe all two
digit speed signals have been grouped in front of three digits speed signals and also
in front of signals that contain two objects that are not digits. This perceptual par-
tition results encourage us to believe that the method is also capable of meaningful
class clustering.

5 Conclusion

We have introduced a new algorithm, discriminant ECOC, for designing compact
error correcting output codes. The result is a multi-class classifier that runs faster
(since it uses fewer number of classifiers) and requires less training time, while main-
taining (and improving in some cases) the performance of the all-pairs approach.
This approach is also the first one to deal successfully with the problem of the
design of application dependent discrete error correcting output code matrices.

We have applied the discriminant ECOC algorithm to the UCI database for val-
idating purposes and to a real computer vision application: traffic sign recognition.
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Figure 4: Discriminant ECOC matrix created for the signal recognition system and
partition at the seventh column

As a result, our method compares favorable to all-pairs and clearly outperforms
one-against-all methods. On the other hand, in the traffic sign recognition it out-
performs the rest of the methods. We believe that discriminant ECOC algorithm
reopens the problem of the design of error correcting output codes and offers a very
promising research line.

References

[1] K. Crammer and Y. Singer, “On the Learnability and Design of Output Codes
for Multiclass Problems,” Machine Learning, vol. 47, no. 2-3, pp. 201-233, 2002.

[2] A. Passerini, M. Pontil and P. Frasconi, “New Results on Error Correcting Codes
of Kernel Machines,” IEEE Trans. on Neural Networks, vol. 15, no. 1, pp. 45-54,
2004.

[3] Y. Freund and R.E. Shapire, “A Decision-Theoretic Generalization of On-line
Learning and an Application to Boosting,” Journal of Computer and System
Sciences, vol. 55, no. 1, pp. 119-139, 1997.

[4] T. Hastie and R. Tibshirani, “Classification by Pairwise Coupling,” The Annals
of Statistics, vol. 26, no. 2, pp. 451-471, 1998.

[5] E.L Allwein, R.E Shapire and Y. Singer, “Reducing Multiclass to Binary: A Uni-
fying Approach for Margin Classifiers,” Journal of Machine Learning Research,
vol. 1, pp. 113-141, 2000.

216 Pattern Recognition : Progress, Directions and Applications



[6] T.G. Dietterich and G. Bakiri, “Solving Multiclass Learning Problems via Error-
Correcting Output Codes,” Journal of Atificial Intelligence Research, vol. 2,
pp.263-286, 1995.

[7] W. Siedlecki and J. Sklansky, “On Automatic Feature Detection,” Int. Journal
of Pattern Recognition and Artificial Intelligence, vol. 2, no. 2, pp. 197-220, June
1988.
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Abstract

The search of a given melody in large data-bases is one of the problems in the
modern topic of music information retrieval (MIR). A huge amount of music files
in symbolic formats can be found today in the Internet, and this has motivated
new challenges for identification and categorization of music data. A number of
pattern recognition techniques can be used to solve this problem. In this paper
we explore the capabilities of trees to provide an expressive representation of
music information. Trees are compared to string representations in terms of
dissimilarity measures, using edit distances. The high computational cost of tree
edit distances needs of complexity reduction techniques to be applied. Partial
tree edit distances will be considered in order to solve this problem. Also, a new
approximate nearest neighbour search for non-vector representation of patterns
(such as trees) is applied to speed up the classification. The combination of
both techniques produces a significant reduction in classification error rates of
string representations while keeping similar classification times.

Keywords: Nearest neighbour, computer music, structural recognition, tree edit
distance, complexity reduction

1 Introduction

1.1 Context and previous works

The search of a particular melody in large data-bases is a great challenge that needs
of accurate and efficient recognition algorithms. In the past few years, the amount
of music files available, such as MP3, MIDI, XML representations, ringtones, etc.
has grown very quickly. Even different variations of the same original theme can

∗This work was supported by the projects Spanish CICYT TIC2003–08496–C04, partially sup-
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be found, so another difficult problem is the recognition of different interpretations
of the same melody. Also, music identification from inaccurate or distorted queries
is needed. The approaches to solve those problems are part of the modern topic
of music information retrieval (MIR) and have lots of applications like organization
and indexing digital libraries or copyright management, to name just two of them.

Some recent papers explore the capabilities of pattern recognition algorithms
to recognize music data. These data can be classified into two main categories:
digitized sounds and symbolic sequences. With regard to digital sounds, a number of
works explore the capabilities of pattern recognition algorithms for finding different
categories in music. A few of them are cited next, covering a representative range
of applications.

In a recent work [1], the authors evaluate the ability of different sets of audio
features, like low-level signal properties, mel-frequency spectral coefficients, and lin-
ear prediction coefficients, for classifying digital sound segments into a set of sound
classes, like sung music, instrumental music, speech, noise, etc. The classification
is performed through a Bayesian approach. In [2] a system based on neural net-
works and support vector machines is presented for classifying audio fragments into
a given list of sources or artists. Also in [3] a neural system to recognize music types
from sound inputs is described. Other audio classifications are based on clustering
analysis. In [4], the authors use self-organizing maps (SOM) to pose the problem of
organizing music digital libraries according to sound features of musical themes, in
such a way that similar themes are clustered, performing a content-based classifica-
tion of the sounds.

On the other hand, symbolic sequences refer to digital scores available in a num-
ber of public formats, like MIDI [5] or MusicXML [6]. Different pattern recognition
techniques have been applied to process and classify these sequences. In [7], the
authors show the ability of grammatical inference methods for modelling musical
style. Stochastic finite automata for a number of musical styles are inferred from
the training set, and then they are utilized to parse and classify new melodies into
the selected styles. In [8], the authors compare the performance of different pattern
recognition paradigms to recognize music style using descriptive statistics of pitches,
intervals, durations, rests, etc. Other approaches like hidden Markov models [9] or
classifier ensembles [10] have been used to recognize melodies, styles, authors or
performers from symbolic data.

The work presented in this paper uses symbolic data as input and deals with the
recognition of melodies with different degrees of distortion. Preliminary results of
the proposed technique have been published in former works [11, 12].

Pattern Recognition : Progress, Directions and Applications 219



1.2 Objectives of this paper

Some papers [13, 14] have discussed the sensitivity of the recognition algorithm
performance to the encoding scheme used to represent the melodic sequences. The
authors point out the need of designing an appropriate representation framework,
because otherwise the algorithms can fail in their classification task. In [13], the
authors present a number of string representations of melodies in terms of symbols
coding the sequence of notes. The results for the different codings are compared,
showing that the way in which the melody is coded strongly conditions the outcome
of the string classification algorithms.

One possible alternative to music string representation are trees [15, 11, 16]. This
data structure has the advantage of being able to represent music note duration
implicitly, so there is no need of designing an alphabet of symbols to represent
durations and time proportions. This way, tree representation of music will be less
sensitive to coding. On the other hand, tree construction, processing, and analysis
are more expensive than for strings.

There is a need of studying whether trees are useful for posing this sort of
problems, and what has to be taken into account to do it. In this paper, a method
for representing melodies as trees is presented. Also, a set of rules are introduced
to label the tree nodes and reduce the initial size of the tree in order to deal with
complexity.

Once the melodic sequences are tree-coded, an efficient classification algorithm
is needed. The trees are compared in terms of dissimilarity measures, using tree edit
distances, that are provided to a nearest neighbour (NN) search algorithm. The
high computational cost of tree edit distances [17] needs of complexity reduction
techniques to be applied. Two cooperative techniques are combined in order to
reduce computational load, keeping the accuracy in a high standard. The first uses
a tree edit distance that is cheaper than the full edit distance, and the second is
based on using a new approximate NN search instead of exact NN search to reduce
the number of distance computations, and thus to reduce classification times. This
new approximate NN search is the extension of previous works on approximate NN
search for prototypes codified as vectors to non-vector representations of prototypes.
Classification error increases with approximate search, but avoids the computation of
a large amount of expensive tree edit distances. The combination of both techniques
reduces the cost, reaching times even better to those of string-coded representations.

Firstly, the method for tree construction will be presented and how it deals with
the notation problems that may appear. Secondly, a set of rules for tree simplifica-
tion is described. Thirdly, the methods for tree comparison and efficient neighbour
search are explained. Finally, the results are presented and some conclusions are
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stated.

2 Representations for music sequences

A melody has two main dimensions: rhythm and pitch. Basically, the first is de-
termined by note onset times and durations, and the second by the fundamental
frequencies of the notes. The main methods for melody search are based on differ-
ent string codings of those dimensions [7, 14], focusing mainly on pitch. Nevertheless,
rhythm is an important component of music. One can find melodies having the same
sequence of note pitches but sounding completely different due to the differences in
their durations.

In string representations, note durations are coded with explicit symbols, but
trees are able to implicitly represent this dimension, making use of the logarithmic
nature of time in music, in the sense that note durations are multiples of basic time
units, mainly in a binary (sometimes ternary) structure. This way, trees are less
sensitive to the codes used to represent melodies, since there are less degrees of
freedom for coding.

In this section the proposed tree construction method for representing a melody is
presented, defining the terms needed to build the model. First, string representations
are described as a reference. For all the discussions, the melodies are assumed to be
monophonic: only one note can be played at a given time.

2.1 Pitch and duration representations

In string representations, note durations are coded with explicit symbols. For rep-
resenting a melody as a string, symbols from a pitch description alphabet, Σp, and
from that of duration, Σd are combined in s ∈ Σ∗, s = σ1σ2...σ|s|. When these
symbols are linked to those of pitch, the code is said to be coupled. In this case,
Σ = Σp × Σd, and σi will be a pair of pitch and duration descriptors. The pair for
a note can only be formed when both dimensions are defined for it.

When both dimensions are handled independently, the representation is said to
be decoupled or splitted. For decoupled string representations, Σ = Σp

⋃
Σd, being

σ2i−1 ∈ Σp and σ2i ∈ Σd; i = 1, 2, ..., |s|
2 . Similarly as before, the symbols for a note

are included in the string only if both dimensions are defined for it.

Different kind of properties can be used for the symbols to represent the sequence
of pitches in a melody [13, 14, 18]. They can be absolute, if the property depends
only on the represented note, or relative, if it is defined in terms of differences to
other notes, usually the preceding one. Next, some commonly used pitch properties
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are presented. In each case, the alphabet, Σp, applicable is enunciated. The symbol
‘s’ (for ‘silence’) denotes a rest.

Definition 2.1 Pitch properties for each note:

p1 pitch name (absolute) the name and octave. If notes are extracted from
MIDI files, the alphabet is Σp1 = {C−2,C�−2, ...,F�8,G8}

⋃
{‘s’}, |Σp1| =

129, although in practice is usually more reduced. The range for piano is
{A−1, ...,C7}, which is enough for most cases. Using this range, |Σp1| = 89.

p2 folded pitch (absolute) the name without octave. |Σp2| = 13, corresponding
to the 12 halftones of the octave, from A to G, including flat and sharp notes,
and the rest.

p3 pitch contour (relative) Σp3 = {−,=,+}; ‘+’ if the pitch of the note is higher
than that of the previous note, ‘−’ if it is lower, and ‘=’ if it is the same. As
for the other relative pitch properties, for the first note in the sequence it is
not defined. |Σp3| = 3.

p4 high-definition contour (relative) same as before but it also includes ‘+2’
and ‘−2’ if the pitch difference exceeds 4 halftones. Σp4 = {−2,−1, 0, +1,+2}.
|Σp4| = 5.

p5 intervals (relative) the difference in halftones between a note and the preced-
ing one. Theoretically, Σp5 = {i ∈ Z |−127 ≤ i ≤ +127}, but in practice large
intervals seldom appear, and some authors limit Σp5 = {i ∈ Z | − 24 ≤ i ≤
+24}, being any other larger value assigned to the extremal values. This way,
|Σp5| = 49.

Rests are not involved in the calculation of relative properties for the note fol-
lowing it, that are computed using the pitch of the note preceding the rest.

Similar definitions can be stated for the durations of the note sequence, defining
a number of duration properties.

Definition 2.2 Duration properties for each note:

d1 duration (absolute) the difference between its onset and offset times, tOFF −
tON , usually expressed as multiples or fractions of the beat duration. Strictly
speaking, this is not a numerable set, but in practice a limited set of durations
appear.
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d2 rhythm contour (relative) Σd2 = {−,=,+}; ‘+’ if the duration of the note
is longer than that of the previous note, ‘−’ if it is shorter, and ‘=’ if it is the
same. For the first note in the sequence it is not defined. |Σd2| = 3.

d3 inter-onset interval, IOI (absolute) the time lapse from the ith note onset
to that of the next; IOIi = tON,i − tON,i+1, expressed as for d1. For the
last note, d3 is defined as its duration (d1). The same described about |Σd1|
is applicable for this case and the next. Note that rests disappear for this
property.

d4 inter-onset ratio, IOR (relative) the ratio between successive IOIs; IORi =
IOIi

IOIi+1
. It is not defined for the last note and for rests.

Rest durations are treated the same way as notes for the properties d1 and d2,
but are ignored for the other two.

For the illustration of these properties, a simple melody has been displayed in
figure 1 and coded in terms of these pitch and duration properties.

4
4

�
� � � �
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B3 D3 A3 C4 E3 s E3

PITCHES DURATIONS
p1: B3 , D3 , A3 , C4 , E3 , s , E3 d1: 1

2
, 1

4
, 1

4
, 1, 1

2
, 1

2
, 1

p2: B , D , A , C , E , s , E d2: -, –, =, +, –, =, +
p3: - , – , + , + , – , - , = d3: 1

2
, 1

4
, 1

4
, 1, 1, -, 1

p4: - , −2 , +2 , +1 , −2 , - , 0 d4: 2, 1, 1

4
, 1, 1, -, -

p5: - , −9 , +7 , +3 , −8 , - , 0

Figure 1: Simple example of melody and how it is represented in terms of different
pitch and duration descriptors. A short dash has been written when the code for a
note is not defined.

Using the above defined descriptions, there are 5 × 4 × 2 = 40 different ways of
coding melodies as strings, being 5 the number of pitch codings, 4 the number of
duration codings, and 2 corresponding to the coupled and decoupled way of com-
bining both dimensions. Nevertheless, the ways of coding a melody as a tree using
the proposed method are just 5, the number of different pitch descriptions defined
above, since duration is implicit in the tree structure. In Fig. 2 some of these rep-
resentations are displayed as an example. Note that the pair of symbols coding a
note are only included when both are defined for it. For example, for the first note,
interval (p5) and duration contour (d2) are not defined, or inter-onset properties (d3
and d4) are not defined for rests.
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p1 and d1, decoupled: B3 , 1

2
, D3 , 1

4
, A3 , 1

4
, C4 , 1 , E3 , 1

2
, s , 1

2
, E3 , 1

p1 and d1, coupled: (B3, 1
2
) , (D3, 1

4
) , (A3, 1

4
) , (C4,1) , (E3, 1

2
) , (s, 1

2
) , (E3,1)

p2 and d2, coupled: - , (D,–) , (A,=) , (C,+) , (E,–) , (s,=) , (E,+)
p5 and d3, decoupled: - , - , −9 , 1

4
, +7 , 1

4
, +3 , 1 , −8 , 1 , 0 , 1

Figure 2: Some string representations using different combinations of properties for
the melody in Fig. 1. A short dash has been written when the code for a note is not
defined.

2.2 Tree construction method

The tree representation approach proposed in this work is based on the fact that
the duration of the music notation symbols are designed on a logarithmic scale: a
whole note lasts twice a half note, whose length is the double of a quarter note, etc.
(see Fig. 3). �
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Figure 3: Duration hierarchy for different note figures. From top to bottom: whole
(4 beats), half (2 beats), quarter (1 beat), and eighth (1/2 beat) notes.

Each melody measure is initially represented by a tree, τi. Each note or rest will
be a leaf node. The left to right ordering of the leaves keeps the same time order of
the notes in the melody. The level of each leaf in the tree determines the duration
of the note it represents, as displayed in figure 3: the root (level 1) represents the
duration of the whole measure (a whole note), each of the two nodes at level 2
represents the duration of a half note. In general, nodes at level i represent the
duration of a 1/2i−1 of a measure.

During the tree construction, internal nodes are created when needed to reach the
appropriate leaf level. Initially, only the leaf nodes will contain a label value, using
the pitch properties described in definition 2.1, but then, a bottom-up propagation of
these labels is performed to fully label the tree nodes. The rules for this propagation
will be described later, in section 2.5.

224 Pattern Recognition : Progress, Directions and Applications



An example of this scheme is presented in Fig. 4 using folded pitches as labels.
In the resulting tree, the left child of the root has been splitted into two subtrees
to reach the level 3, that corresponds to the first note (a quarter note, duration of
a 1/22 of the measure, pitch B). In order to represent the durations (both are 1/8
of the measure) of the rest and note G, a new subtree is needed for the right child
in level 3, providing two new leaves for representing the rest (s) and the note (G).
The half note (C) onsets at the third beat of the measure, and it is represented in
level 2, according to its duration.

It can be seen in figure 4 how the order in time of the notes in the score is
preserved when traversing the tree from left to right. Note how onset times and
durations are implicitly represented in tree, compared to the explicit encoding of
time needed by strings. Using the definitions 2.1, only five tree representations are
possible, compared to the 40 for strings. In addition, this representation is invariant
against changes in tempo, or different meter representations of the same melody
(2/2, 4/4, or 8/8, for example).

4
4 � � �� �

B s G C

�
�

�
�

�
�

�
�

�
��

�
��

B

�
�

�
�

s G

C

Figure 4: Simple example of tree construction with folded pitches (def. p2).

2.3 Processing non binary durations

In some occasions the situation can be more complicated. There are note durations
that do not match a binary division of the whole measure. This happens, for ex-
ample, for dotted notes (duration is extended in an additional 50%) or tied notes
(their durations are summed) (see Fig. 5-left). In this situation, a note can not be
represented just by one leaf in the proposed scheme. It is well known [19, 20] that
our auditory system perceives in a similar way one note of a given duration and two
notes of the same pitch, played one after the other, which durations sum that of the
single one.

Thus, when a note exceeds the proper duration, in terms of binary divisions of
time, it will be subdivided into notes of binary durations, and the resulting notes are

Pattern Recognition : Progress, Directions and Applications 225



coded in their proper tree levels. In Fig. 5 an example of these situations is shown
and how they are represented by this scheme.
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Figure 5: Tree representations of notes exceeding their notation duration: dotted
and tied notes. Both ‘C’ leaves correspond to the same dotted quarter note. The
two ‘E’ leaves represent the two tied notes.

Other frequently used non binary divisions are ternary rhythms. In that case,
the length of one measure is usually 3 beats and it is splitted into 3 quarter notes,
etc. This is not a problem, since neither the tree construction method nor the
metrics used to compare trees need them to be binary, and the number of children
for each node can be an arbitrary number. In ternary meters or ternary divisions, the
number of children for a node will be three. This can be generalized to other more
complicated cases that can appear in musical notations, like tuplets or compound
meters. In figure 6 an example of compound meter based on ternary divisions and
its representing tree is shown.
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Figure 6: The meter 9/8 is a compound one based on ternary divisions. The tree
construction method can represent this melody without problems.

There are other subtle situations that may appear in a score, like for example
grace notes1, that are not included in the cases described above. Anyway, in the

1 A grace note is a very short note or a series or notes to achieve musical effects that occupies

no time in the duration notation in a score. They also are named “acciaccatura”.
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digital scores, like MIDI files, these special notes do not appear, and short notes
would be present for grace notes that will be coded in the level of the tree that
corresponds to its actual duration. The details of these situations are described in
detail elsewhere [11].

2.4 Representation of complete melodies

The method described above is able to represent a single measure as a tree, τ . A
measure is the basic unit of rhythm in music, but a melody is composed of a series
of M measures. Next, the way of combining the set of trees {τi}

M
i=1 computed for

every single measure is discussed.

Joining the set of computed measure trees in an ordered way is needed to build
the tree, T , for the complete melody. For this purpose, a method for grouping the
sub-trees is required. They can be grouped two by two, by adjacent pairs, repeating
this operation bottom-up, hierarchically, with the new nodes until a single tree is
obtained. Nevertheless, with this grouping method, the trees would grow in depth
quickly:

h(T ) = log2M + 1 + max
i

h(τi) ,

making the tree edit distance computation very time consuming, as will be discussed
in section 3.1. Another possibility is to build a tree with a root for the whole melody,
being each measure sub-tree a child of that root. This can be considered as a forest
of sub-trees, but linked to a common root node that represents the whole melody.
This way, the tree depth for the whole melody will be only

h(T ) = 1 + max
i

h(τi) .

This smaller depth of the whole melody tree, T , is a key point to choose this approach
to build T . Figure 7-left displays an example of a simple melody, composed of three
measures and how it is represented by a tree composed of three sub-trees, one per
measure, rooted to the same parent node. The level 0 will be assigned to this
common root.

2.5 Bottom-up propagation of labels and pruning

Two causes motivate the procedure described in this section. Firstly, tree edit
distance algorithms need all the nodes (both internal and leaves) to have a label [17,
21]. After the structure of the tree is completed, the pitch labels are just in the
leaves. A set of rules are used for propagating the labels from the leaves upwards,
labelling the internal nodes. The propagation of a label is decided on the basis
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Figure 7: An example of the tree representation of a complete melody. The root of
this tree links all the measure sub-trees.

that the note in that node is more important than that of the sibling node. The
importance of a note is related to its capability to contribute to the melody identity.

Secondly, the high complexity of the tree edit distance computing (see section 3),
requires the trees to be as small as possible. When very short notes appear or they
do not match exactly the binary or ternary subdivisions of the beat, the resulting
trees are very deep. Thus, the label propagation rules are accompanied of a pruning
action to delete little significant branches when applying the rules below a given
pruning level. This process also contributes to remove irrelevant information that
would make the classification more difficult, obtaining reduced trees able to keep
the main musical features of the melody.

Given a pruning level, p, the rules for propagating the labels to internal nodes and
pruning the tree are defined below. In each case, a rule is applied to a sub-tree, and if
the level l of the sub-tree is below the pruning level p, the labels are propagated and
the tree is pruned; otherwise, the rule only propagates labels, keeping the structure
of the tree. This pruning level is equivalent to the resolution desired for the resulting
tree in terms of note lengths. This way, in the pruning tree, the notes represented
will be always longer or equal to a 1/2p−1 fraction of the measure length. A value
p = ∞ means that pruning is never applied.

The set of propagation (and pruning when applicable) rules are described below
and illustrated in figure 8. For the definitions, a parenthesis notation is used for the
trees, in such a way that a subtree, t, having a father node with label a, and two
children: left with label b and right with label c, is denoted as t = a(bc). If a node
has not a label, we will consider it as labelled with the empty label, ε. All the labels,
except ε, are symbols in one of the Σp alphabets. The value ‘s’ is explicitly used for
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rests.

All the definitions have been stated for binary sub-trees but they can be extended
for ternary trees, keeping the meaning of each situation. The number of possible
cases for each rule is much greater, so they have not been included here for clarity.
All these rules are illustrated in figure 8.

Definition 2.3 Propagation and training rules:

r1 The r1 rule simply propagates/prunes a unary tree:

r1
[
ε(a)

]
=

{
a if l ≥ p
a(a) otherwise

If there is only one child it is automatically upgraded. This situation seldom
appears but it can be found in the rightmost note of an incomplete measure
or building the tree from a single measure.

r2 The r2 rule makes the pitch propagate over a rest:

r2
[
ε(sa)

]
=

{
a if l ≥ p
a(sa) otherwise

r2
[
ε(as)

]
=

{
a if l ≥ p
a(as) otherwise

r3 The r3 rule is also very simple, and joins equal pitches:

r3
[
ε(aa)

]
=

{
a if l ≥ p
a(aa) otherwise

If all the children of a node have the same label, they are deleted and its label
is placed in the father node. Thus, two equal notes are equivalent to just one
with double duration.

r4 If one of the children nodes has the same label as that of the father’s sibling
node, then the other label is propagated. This rule tries to avoid the propa-
gation of a pitch that would be lost by the application of r3 in the next step.
This is formalized here for all possible cases:

r4
[
ε(ε(ba)b)

]
=

{
ε(ab) if l ≥ p
ε(a(ba)b) otherwise

r4
[
ε(ε(ab)b)

]
=

{
ε(ab) if l ≥ p
ε(a(ab)b) otherwise
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r4
[
ε(bε(ba))

]
=

{
ε(ba) if l ≥ p
ε(ba(ba)) otherwise

r4
[
ε(bε(ab))

]
=

{
ε(ba) if l ≥ p
ε(ba(ab)) otherwise

r5 The r5 rule limits the applicability of the former rules, that otherwise could
propagate a very short pitch to a much longer note, eliminating other longer
pitches. In order to avoid that, any rule (denoted as r in the rule below) can
be applied only three times for the same label (this implies to stretch its length
in a factor of 23 for binary meters).

r5
[
ε(ab)

]
=

{
b if l ≥ p
b(ab) otherwise

r5
[
ε(ba)

]
=

{
b if l ≥ p
b(ba) otherwise

iff
a is the root of t = r

[
r
[
r
[
. . .

]]]
and

a comes from a node 3 levels below.

r6 The r6 rule is a “default” case, whenever any other rule may be applied:

r6
[
ε(ab)

]
= a(ab)

This rule upgrades the label of the left child, because in binary meters, the
notes placed in odd beats are usually stressed. These notes are represented by
left children in the tree.

All these rules are applied under certain conditions and precedence order that
are described in the algorithm 1:

An example of the application of these rules is displayed in figure 9 with a level
p = 2. One measure with some notes with different durations is considered. In the
left side of that figure, the score and the tree as it results from the construction pro-
cedure is presented. The labels in that tree are folded pitches (p2) in definition 2.1).

In Fig. 9-left it can be observed how the propagation and pruning rules apply
to the tree. A value of the pruning level p = 2 has been considered. This way,
the rules applied below that level in the tree (l ≥ p) are pruning rules, otherwise
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Figure 8: Propagation and pruning rules. (left column): original sub-tree; (center
column) propagation rules; (right column): pruning rules.
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Algorithm 1 Application of rules

if arity(t) = 1 then

r1

else if left-child(t) = ‘s’ or right-child(t) = ‘s’ then

r2

else if left-child(t) = right-child(t) then

r3

else if root(t) comes from a leaf 3 levels below then

r5

else if t = ε(ε(ba)b) or t = ε(ε(ab)b) or t = ε(bε(ba)) or t = ε(bε(ab)) then

r4

else

r6

end if

s F F A G
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F F

G

G

G

A G

s

F F

A G

G

G

F

F

A

A

G

F

r4

r4

r5

r3

r2

r6

r3

A G

r4

p=2

s F A G

Figure 9: (left) One measure-melody and its tree representation with interval labels
(only in the leaves now) before pruning and label propagation. (right) Final tree
with propagated and pruned nodes (in dashed lines after applying dashed rules).
The equivalent melody to the pruned tree is also displayed (right-bottom).
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are just propagation rules. In the first half of the melody, the deepest levels have
equal labels (F), so they are upgraded by the rule r3 and then by r2 because the
sibling node is labelled with a rest. The second part shows how a very short note
(A) is propagated by applying r4 three times. Thus, r5 is applied instead of r6 that
otherwise would have been applied, propagating ‘A’ again.

Note that in the score equivalent to that tree (Fig. 9-left-bottom) only quarter
notes (in this context, their duration can be stated as a 1/2p−1 of the measure)
have survived to the propagation and pruning rules, keeping the main features of
the original melody.

3 Tree edit distance

Once the tree representation scheme has been introduced, the next section of this
paper is for describing how the trees are compared. The problems that arise related
to the complexity of this task are also discussed.

The edit distance between two trees can be defined as the minimum cost of
the sequence of operations that transforms a tree into the other [17]. The editing
operations are the same as those used in standard string edit distance (i.e. the
Levenshtein distance): deletion of a node, insertion, and substitution of a node label.
The more similar the structures of the trees are, the less operations of deletion and
insertion have to be done, and the smaller the distance between them is.

3.1 Full edit distance

The Shasha and Zhang method [17] to compute the edit distance between two trees,
TA and TB , has a time complexity of O(|TA| × |TB | × h(TA) × h(TB)), where |Ti|
are the number of nodes in the trees and h(Ti) are their depths. It uses the tree
editing operations described above, giving a cost to each operation. The objective
is to achieve a mapping between both trees that requires the least cost sequence of
operations, looking for similar tree structures, that is, similar rhythmical patterns.

We have used the Shasha and Zhang algorithm [17] to compute the full tree
edit distance. It obtains the distance between both trees that requires the least cost
sequence of operations, looking for similar tree structures, that is, similar rhythmical
structures.

The cost weights used for the edit distance operations have been set to 1 for
insertion and deletion. For substitution, the weight is 0 if the label is the same and
1 otherwise. Other tested weights did not improve the results.
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3.2 Partial edit distance

The high cost of the full edit distance, makes it advisable to look for a cheaper
alternative. The technique introduced by Selkow [21] has this property. The main
functional difference of this technique is that node insertions and deletions can be
done only at the leaves of the trees. Only after removing all the subtree rooted at a
node it can be deleted. The restriction of the way a node can be inserted or deleted
makes the algorithm simpler, but less accurate.

The lower complexity is the main advantage of the Selkow method. Its time
complexity is O(nAnBh) where nA and nB are the maximum arities of the trees TA

and TB, respectively, and h is the maximum depth of both trees. Due to the whole
melody tree construction method described in section 2.4, joining all the measure
sub-trees in a single, root, in our case, nA and nB will be the number of measures
of the two melodies to be compared.

4 Nearest neighbour classification with tree edit dis-

tance

The NN classification rule is a widely known non-parametric technique for classifi-
cation tasks. Although usually an object (prototype) is represented as a vector of
features (a point in R

n), the NN rule may also be used when objects are represented
as strings or trees, if an adequate dissimilarity measure is defined.

When the distance has very high time complexity (like in our case), the classifi-
cation time per sample becomes very high, if the exhaustive NN search is applied.
As the bottleneck in this task is obviously the distance computation, a fast NN
search algorithm is essential. More precisely, we need an algorithm that computes
a very low number of distances, like AESA [22], LAESA [23], and TLAESA [24].
These algorithms are not the fastest when prototypes are represented as vectors,
but do their best when distance computations are very time consuming, like when
prototypes are represented as strings or trees, for instance, due to the small number
of distance computations.

However, even with the algorithm that computes less distances (AESA), the
average classification time per sample in our experiments was still too high, as we
will explain later in section 5. In order to address this problem we have tried two
alternatives: first, to use the Selkow tree edit distance, which is much faster but less
accurate. Second, to extend previous work on approximate NN search [25], mainly
focused on vector spaces of representation, to the algorithms mentioned above, which
are suitable for any metric space, not only for vector spaces. We have also extended
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the Fukunaga and Narendra’s algorithm [26], which is also suitable for metric spaces
in general.

4.1 Approximate NN search in non-vector spaces

The idea of approximate NN as stated in [25] is to find a neighbour of the unknown
object (the sample) which is not farther than a certain factor ε from the actual NN
of the sample, that is, its distance is not greater than (1 + ε)dnn, where dnn is the
distance to the actual NN. The approximate NN search is thus faster than exact
NN search when ε increases, but usually error rates also increase with the value of ε.
Thus, the problem is to find an adequate value of ε in order to speed up classification
without increasing too much the error rates.

In this work we present the application of the ideas in [25] to algorithms suitable
for non-vector spaces; however, the changes needed for this task are algorithm-
dependent. In the case of AESA and LAESA, the algorithms compute a lower
bound of the distance of each prototype p to the sample x, g(x, p), using the triangle
inequality and some previously computed distances: given a set B of prototypes
whose distance to the sample has been computed, and given that the distances
from these protoypes to all other prototypes in the training set have been computed
during the training of the classifier, the lower bound can be computed as:

g(x, p) = maxb∈B |d(x, b) − d(b, p)|

In the case of AESA, the set B is the set of all prototypes whose distance to
the sample has been computed (this implies a continuous reevaluation of the lower
bound); however, a table holding all the distances between the prototypes in the
training set has to be stored, thus the spatial complexity becomes quadratic. In the
case of LAESA, the set B is selected at training time so that the prototypes in B
are maximally separated, allowing an acceptable lower bound computation without
the quadratic spatial complexity (see [22, 23] for the details).

Both algorithms traverse the training set, selecting a candidate to nearest neigh-
bour as the one with the lowest lower bound. Then, its distance to the sample is
computed and the current nearest neighbour is updated, if possible. The algorithm
finishes the search when the next candidate c has a lower bound higher than the
distance to the current nearest neighbour, dnn, that is, when:

g(x, c) > dnn (terminating condition for exact NN search)

The extension of these algorithms for approximate NN search is straightforward:

(1 + ε)g(x, c) > dnn (terminating condition for approximate NN search)

Pattern Recognition : Progress, Directions and Applications 235



M

x

Rp

d(x,M )-Rp p

p

Figure 10: Lower bound of the distance from the sample x to a node p in the
Fukunaga and Narendra’s algorithm.

By using this new terminating condition the algorithm stops the search earlier (de-
pending on the value of ε), thus allowing a faster classification.

The TLAESA and Fukunaga and Narendra’s (FN75) algorithms both build up a
tree from the training set and traverse it using a branch and bound scheme, similar
to the tree traversal that uses the k-d tree, in which is based the approximate search
proposed in [25]. One of the various implementations of approximate search over a
tree uses a priority queue to store unvisited tree nodes. The nodes are stored along
with a key m, which is used to sort the nodes in the queue, so that the node with the
minimum key is the first to be extracted from the queue. In the case of TLAESA
and FN75, the key for the priority queue is a lower bound of the distance from all
the prototypes contained in a node p to the sample x (see figure 10):

m = d(x,Mp) − Rp (FN75)
m = g(x,Mp) − Rp (TLAESA)

where Mp is the representative of the node, Rp is the radius of the node and g(·, ·)
is a lower bound of d(·, ·) (computed exactly in the same way as in the LAESA
algorithm). The expressions for the keys are derived from elimination condition for
non-leaf nodes of each algorithm.

The search phase is very similar in both algorithms: at each step, the algorithm
extracts a node from the queue (the one with the minimum key), and then it prunes
one or both of its children and stores the others in the queue. Whenever the next
node extracted from the queue has a key higher than dnn, the algorithm finishes the
search. When using a priority queue to traverse the tree, the approximate search
is easy to incorporate: as in the case of AESA and LAESA, when m(1 + ε) > dnn

the search finishes. In the four algorithms, letting ε = 0 means an exact (non-
approximate) NN search.
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5 Experiments and results

The dataset has a total number of 641 prototypes (melodies extracted from MIDI
files), from 149 different classes (different melodies). The MIDI files corresponded to
film soundtrack themes, some well known pop-rock songs and classical music pieces
from the ”classical period”, in such a way that different versions of those themes
could be easily found in the Internet. Each melody prototype has been represented
by a tree for each pitch property (producing 5 different trees) and by the 40 possible
different string representations, as discussed in section 2.1.

The evaluation of classification error has been made using the leaving-one-out
technique, due to the low number of prototypes per class available. All the classifi-
cation experiments have been performed with the NN classifier.

The first experiment has been designed to assess the ability for melody identi-
fication of the different pitch properties described in definitions 2.1, and compare
them to their use in strings together with the duration properties presented in defi-
nitions 2.1.

The second experiment tries to evaluate the classification and time performance
of full and approximate tree edit distance, using approximate NN search. String
representation performance will be taken as a reference also in these experiments.

5.1 Pitch representations

The performances for the five different kind of pitch properties as a function of the
pruning level, p ∈ [3, 8] and p = ∞ have been tested and compared to a number of
string representations in terms of error rate and classification times.

The classification results for the pitch properties are plotted in figure 11. Inter-
vals (p5) achieved the best performances, and a pruning level of p = 5 was the best
in most cases. Note that strings performed worse than trees in general.

The error rates for all the considered representations were averaged for both
trees and strings (dotted lines in figure 12). Average classification times (measured
as time in seconds per prototype in the training set), computed with the full tree
edit distance, are plotted in the same graph for comparison. Note that the string
edit distance is much faster (around 0.3 s/prototype) than tree edit distance and
this measure increases in time dramatically for p ≥ 5. From the plots in that graph
can be stated that p = 5 can be a good compromise between time and classification
error, and this value will be utilised for the next experiments.
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Figure 11: Classification performances with different pitch properties as a function
of the pruning level. For clarity, the string results are displayed only for the duration
property “duration” (d1) in a coupled coding with the different pitch properties.

5.2 Partial distance and approximate search

In this experiment, intervals have been used both for the tree representation and
for the strings. For trees, the pruning level is p = 5. First, the performance of the
full edit distance is studied versus the value of ε defined in section 4.1 and then, the
same is done for the partial edit distance.

The error rates and average classification times per sample for the Shasha and
Zhang distance are plotted in figure 13, for increasing values of ε, with the error
rates and classification time for the string representation as a reference (without
approximate NN search). The results show that using a tree representation improves
the performance of the classifier, lowering its error rates around a 10 percent with
regard to strings using the same pitch representation with the best of the four posible
duration representations for that pitch. A value of ε = 2% have been the maximum
allowed in such a way that trees perform better than the best string coding.

The results depend highly on the NN search algorithm: the error rates and
classification time for LAESA and TLAESA are very similar; in the case of AESA,
its time performance is always the best, but has a quadratic space complexity that
makes it useless for large training sets. The FN75 algorithm needs higher values for
ε, as the other three algorithms compute the lower bound of the distance from a node
to the sample. The best results are those of the AESA, but if we discard AESA due
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Figure 12: Evolution of time and error rate versus tree pruning level (averaged for
all the different labels). References for strings are plotted as horizontal lines.

to its quadratic spatial complexity, all other three algorithms obtain similar results
(although with different values of ε): if we allow approximately a 2 percent increase
in error rates, the classification time may be reduced in more than a third part with
respect to an exact NN search.

The classification times of Shasha and Zhang’s distance are still too high with
respect to the string representation, so we tested Selkow’s tree edit distance. The
same experiments were reproduced using this new distance, and the results are shown
in figure 14. Although error rates increase a little with this distance, classification
times have been dramatically reduced, and still it is possible to reduce them more
using approximate NN search. Once again, the best results are obtained by AESA,
but the results for the other algorithms are similar than those of the Shasha and
Zhang distance. The important point is that the tree representation classification
times are similar (and sometimes better) to those of the string representation, while
the error rates keep lower than string ones.

6 Conclusions

Tree representation of melodies has been proposed to improve identification rates
achieved by string representations and to reduce the degrees of freedom of strings
for coding. To overcome the higher processing time of tree representation classifiers,
a combination of low-cost partial tree edit distance and approximate NN search has
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been proposed.

The results show that the tree representation reduces the error rates of string
representations. The addition of rhythmic information to string coding in order to
improve classification rates opens a high number of different possibilities that must
be explored in order to reach the best possible result, while tree coding naturally
represents that information in its hierarchical structure in a unique manner, thus
reducing the degrees of freedom in the representation.

A set of rules have been defined in order to fully label the tree internal nodes
and to prune the tree to keep its depth limited. Both things are needed to apply
the tree edit distance and to reduce classification times. A maximum pruning depth
equal to 5 (no notes shorter than an eighth note remain) provided small trees and
good classification rates with our corpus.

Among all the pitch properties defined to label the trees, note intervals have
produced the best results.

The combination of partial tree edit distance with approximate NN search allows
the classification times to be comparable to or sometimes better than those of strings,
with a small increase in error rates that still remain lower than those of strings.

For the future work we plan to develope and use methods for automatic mo-
tive extraction and segmentation of melodies. This would allow to extract melodic
“thumbnails” that could be used as a representative of the whole melody for more
efficient search and identification.
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José Ruiz-Shulcloper, editors, Proc. of the 8th Iberoamerican Conf. on Pattern

Recognition, CIARP, pages 375–382, 2003.
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Abstract

Intestinal motility assessment with video capsule endoscopy arises as a novel
and challenging clinical fieldwork. This technique is based on the analysis of the
patterns of intestinal contractions obtained by labelling all the motility events
present in a video provided by a capsule with a micro-camera attached to it,
which is ingested by the patient. However, the visual analysis of the video se-
quences presents several important drawbacks, mainly related both to the high
amount of time needed for the visualization process, and the low prevalence of
intestinal contractions in video. In this paper we propose a machine learning
system to automatically detect the intestinal contractions in video capsule en-
doscopy, driving a useful but not feasible clinical routine into a feasible clinical
procedure. Our approach is based on a sequential design with to basic aims:
the reduction of the imbalance rate of the data set and the modular construc-
tion of the system, which adds the capability of including domain knowledge as
new stages in the cascade. We provide a detailed analysis of the performance
achieved by our system, showing a reasonable outcome in terms of several per-
formance metrics.

Keywords: Video Capsule Endoscopy, Intestinal Motility, Classification, Imbal-
anced data sets

1 Introduction

Small intestine motility dysfunctions are shown to be related to certain gastrointesti-
nal disorders which can be manifest in a varied symptomatology [1]. The analysis
of the intestinal contractions of the small bowel, in terms of number, frequency
and distribution along the intestinal tract, represents one of the methods with the
highest clinical pathological significance [2], which has been successfully applied and
reported in recent studies [3]. Certain myopathic diseases have been associated
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with functional abnormalities of the intestinal muscle, which carry the presence of
weak intestinal contractions and gastrointestinal dysfunctions. Other pathologies
have been shown to be related to neuropathies which affect the way the nervous
system controls the intestinal activity, presenting intestinal motility disorders that
lead to disorganized contractions and hinder the movement of the nutrients along
the intestinal tract. Ileus, bacterial overgrowth and the irritable bowel syndrome
have been reported as major clinical disorders related to intestinal dysmotility; in
these cases, the analysis of intestinal contractions has shown to be a helpful tool, as
well [2].

Current techniques for assessment of small intestinal motility are multiple and
complementary [2,4], but small intestinal manometry is widely accepted as the most
reliable so far. Small intestinal manometry technique consists of the measurement
of the pressure in certain points of the small intestine by means of multiple pressure
sensors distributed along a thin tube that is introduced through the esophagus,
giving as a result a graph with the contractile activity presented as variations in
pressure detected by the sensors. Two main sets of drawbacks are associated with
this technique: On the one hand, it is an invasive test which carries discomfort
problems for the patient, and the presence of medical staff is needed throughout the
whole process. On the other hand, its clinical value is limited to the examination
of severe intestinal motor alterations, and it suffers a lack of sensitivity over certain
types of intestinal contractions that cannot be detected by means of this method.

In this paper, we address the study of intestinal contractions in a novel approach
using Wireless Capsule Video Endoscopy (WCVE) as data source. WCVE consists
of a capsule with a camera, a battery and a set of led lamps for illumination attached
to it, which is swallowed by the patient, emitting a radio frequency signal that is
received in an external device. The result is a video movie which records the trip
of the capsule along the intestinal tract with a rate of two frames per second, and
that can be easily downloaded into a PC with the camera software installed. This
technique overcomes most of the drawbacks related to manometry: it is much less
invasive, since the patient simply has to swallow the pill, which will be secreted in the
normal cycle through the defections; moreover, there is no need of hospitalization nor
expert support through the process and the patient can lead an ordinary life, since
the attached device is recording the video movie emitted by the pill. Once the video is
downloaded into the workstation, the expert visualizes the zone of interest and labels
those frames where an intestinal event is detected, obtaining the temporal pattern
of intestinal contractions which is to be used as a base for the intestinal motility
dysfunction assessment. However, the visualization and precise interpretation of the
capsule recordings is not straightforward, but it is time consuming and stressful,
since the prevalence of contractions in video is very low (1:50 frames). Visualization
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time can vary depending on the frame ratio used for this purpose, but generally
speaking it is common that for a visualization study of the whole small intestine the
expert takes about one or two hours, making it not feasible as a clinical routine.

In order to deal with the drawbacks we have mentioned above, and make the anal-
ysis of the information provided by the capsule feasible for clinical routines, we have
focused our efforts on the design of a system for the automatic annotation of intesti-
nal contractions in capsule video endoscopy. Several works have been reported in the
fieldwork of classical endoscopy, addressing the support of automatic systems for the
diagnosis of different pathologies, such as ulcer or cancer, with applications based
on digital image analysis and processing. In these studies, endoscopic images have
been analyzed in terms of textural, color and other morphological features [5–10].
As far as we know, no preceding work has been reported on computerized analysis of
capsule video endoscopy for the automatic identification of specific motility events
such as intestinal contractions, making this novel framework a challenging and open
field of research.

Our proposal is based on a machine learning system which automatically learns
and classifies contractions from a capsule video source, providing the expert with
a subset of the video sequences which are highly likely to contain intestinal con-
tractions. This yields to a considerable reduction in visualization time, and the
consequent reduction of stress, since most of the sequences to be analyzed are real
contractions. In addition, one of the main advantages of our system is related to
its ability to dynamically adapt itself to the different patterns of intestinal activity
associated with intestinal contractions.

The rest of the paper is organized as follows: In Section 2, we develop the analysis
and explanation of WCVE images, the different visual appearance of the different
types of intestinal contractions and the difficulties inherent in their detection. In
Section 3, we describe the structure of our video analysis system, namely, the feature
extraction and the classification stages. Section 4 presents our experimental results.
Finally, we devote the last sections of this paper to the analysis and discussion of
the results provided, and the exposition of our proposals for future pieces of research
on intestinal motility with video capsule endoscopy.
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2 INTESTINAL CONTRACTIONS IN VIDEO CAP-
SULE ENDOSCOPY

2.1 Basic concepts on gastrointestinal motility

Muscle layers of the gut wall and their innervation are organized to provide the
motor functions along the intestinal tract. The interaction of the gut with the cen-
tral nervous system is performed through either somatic or autonomic neurons, and
communication between various parts of the gut is performed by the transmission
of myogenic and neurogenic signals longitudinally along it, as well as reflex arcs
transmitted through autonomic neurons [1]. As a result of muscular stimulation, a
contractile activity and tone is produced, and intestinal contractions are generated.
From a physiological point of view, the different patterns of contractions can be
gathered into two main categories, namely, phasic and tonic. The former are char-
acterized by a sudden closing of the intestinal lumen, followed by a posterior opening,
while the latter corresponds to a sequence of a closed lumen for an undetermined
span in time. Both the type and the spatial frequency of intestinal contractions de-
pend on the region of the gastrointestinal tract (stomach, small intestine or colon),
and the temporal patterns they present are different during fasting (before the in-
gestion of nutrients) and postprandial stage (after the ingestion of nutrients). In
this work, we restricted our field of research to the study of small intestinal motility
assessment by means of the analysis of phasic contractions in fasting patients, in an
attempt to provide a first approach to the global problem. The further extension of
this work to tonic contractions, and the generalization of intestinal motility assess-
ment by means of the analysis of postprandial patients is part of our current line of
work, and it constitutes the object of study for subsequent pieces of research.

2.2 Intestinal contractions sequences with capsule endoscopy

Video capsule endoscopy images show a perspective of the inner gut during the trip
of the capsule along the intestinal tract. This modality of images present a circular
field of view, in which the intestinal wall and the intestinal lumen are shown (see
Figure 1). The contraction of the muscle layer of the intestine is observed as a
closing movement of the lumen, which is spanned over a few frames in the case
of phasic contractions, and a longer sequence for tonic. Figure 2 shows a mosaic
where the frames of a video have been deployed in a sequential way and different
intestinal contractions have been outlined in a green frame. In order to completely
understand the visual paradigm of phasic contractions in video capsule endoscopy,
important physiological and technical issues have had to be taken into account: On

248 Pattern Recognition : Progress, Directions and Applications



Figure 1: Appearance of a frame in capsule video endoscopy. The intestinal lumen
and walls are rendered in a circular field of view.

the one hand, the maximal frequency of phasic contractions is known to be between
11 and 12 events per minute, spanning 4 to 5 seconds in average for the whole open-
close-open cycle [1, 2], while the frame acquisition ratio of the camera is typically
set on 2 frames per second [11]. Thus, we adopted the convention of bounding
the span of a phasic contraction for fasting videos in a sequence of 9 frames. In
the rest of the paper, we refer to a contraction sequence as a 9 frames sequence,
where the central frame is set to be the frame that will be labelled as a detected
contraction (tonic contractions might be treated in a different way, both for the
differences in their duration and their separate physiological implications). On the
other hand, the intensity with which the intestinal walls concentrically contract is
not the same for all the contractions, and sometimes the closing of the lumen is not
complete. If the lumen is completely closed during a contractile activity, this kind
of event is referred to as an occlusive contraction; in case the lumen closing is not
complete, the intestinal contraction is referred to as non occlusive. Non occlusive
contractions are hard to detect by classical manometry, since the intestinal walls
are not accomplishing enough amount of pressure to the pressure detectors. In
video capsule endoscopy this kind of contractions is clearly shown, however. Figure
3 pictures out two sets of three different examples of (a) occlusive and (b) non
occlusive contractions.

Unfortunately, the visual patterns of intestinal contractions in capsule endoscopy
are not usually as clear as those rendered in Figure 3. The origin of this variability
is twofold and strictly related to 1) technical issues linked to the movement of the
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Figure 2: An example of capsule endoscopy video, which has been sequentially de-
ployed for visualization purposes. Some intestinal contractions can be distinguished
surrounded by a green square.

capsule device along the bowel, and 2) other physiological reasons -see Figure 4 for
a graphical representation-:

1. Camera movement : The position of the camera in the intestinal lumen during
the contractile activity is not steady. Since the capsule is freely moving into the
gut, multiple changes in direction (namely, focusing the intestinal lumen or the
lateral intestinal wall) and orientation (i.e., facing the proximal or distal parts
of the tract) are performed. As a result, the camera is not always focusing the
central part of the lumen, and this yields to a high variability of the visual
patterns obtained in the video sequences. Figure 5 renders a representative
set of examples of this situation in three intestinal contractions labelled by the
specialists.

2. Turbid liquid : The good visibility of the intestinal lumen and wall is usually
hindered by the presence of intestinal juices mixed up with the remains of
food. This is visualized as a semi-opaque turbid liquid in a wide range of
colors from brown to yellow. In addition to this, the turbid liquid may be
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(a) Occlusive (b) Non-occlusive

Figure 3: Three sequences of nine frames of occlusive and non-occlusive intestinal
contractions. The central frame corresponds with the frame labelled by the expert
identifying the contraction event.

accompanied by the presence of bubbles and other artifacts related to the flux
of the different liquids into the gut. As a result, the turbid liquid is interposed
between the camera and the intestinal contraction event, obstructing its right
visualization. This phenomenon is shown to be more acute in the case of
postprandial studies, but it is relevant for fasting videos, as well. Figure 6
shows some example sequences of contractions which include the presence of
turbid liquid.

In order to tackle the inherent complexity associated to the diverse visual pat-
terns which an intestinal contraction may manifest in video capsule endoscopy, we
focused our efforts on the design of a machine learning system for the automatic la-
belling of intestinal contractions. Through the next section we describe and justify
the main traits of our approach, which is constructed in a sequential way following
the shape of a cascade.

3 A cascade system for the detection of intestinal con-
tractions in video capsule endoscopy

Our system is deployed in a sequentially modular way, namely, a cascade, as pic-
tured out in Figure 7. Each part of the cascade receives as an input the output
of the previous stage. The main input consists of the video frames, and the main
output consists of the frames suggested as contractions. The rejected frames are
distributed among three different stages: a first threshold stage, where most of the
non-contractions frames are filtered; a second stage, where turbid not valid for anal-
ysis frames, wall frames and tunnel frames are rejected; and a final classification
stage based on a support vector machine, where the final output is provided as sug-
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(a)

(b)

(c)

Figure 4: Graphical representation in three steps (before, in the moment of, and
afterwards the contraction event): (a) The paradigm of a phasic contraction, (b)
the camera pointing towards the intestinal wall, and (c) the presence of turbid
liquid hindering the visualization. These patterns match the sequences rendered in
Figures 3, 5 and 6 respectively.

Figure 5: Three sequences of intestinal contractions showing diverse patterns due to
the random camera orientation regarding the intestinal lumen.

Figure 6: Three sequences of intestinal contractions with presence of turbid liquid,
which hinders the correct visualization of the event.
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Figure 7: Cascade system for intestinal motility assessment. The input is the video
studio and the output are the intestinal contraction frames suggested by the system.
Each stage, rejects sequences of non-contractions. The global performance can be
tuned by the set of parameters P .

gested contractions. The learning steps of each stage of the cascade involve a set of
parameters P for tuning the classification performance. The turbid frames step and
the final classification step consist of two support vector machine classifiers trained
with a data set which has been labelled from previous studies.

The choice of the cascade system is underpinned by the fact that each step is
designed in order to reject an amount of frames which mainly include images which
are not to be intestinal contractions -i.e., the system negatives-, letting pass through
the sequential stages those frames related to intestinal contractions -i.e., the system
positives-. This yields to an effective reduction of the imbalance ratio of the data
set at the input of the last classification stage. Many authors have applied diverse
strategies in order to tackle the impact the imbalance ratio has in the performance
of classification, involving stratified sampling, cost-sensitive approaches, different
implementations of decision trees and bagging, and the use of several metrics for
performance measurement, mainly [12–17]. In our strategy, each stage is tuned to
prune as many non-contraction frames as possible, trying to minimize the loss of
true positives, and achieving in this way an effective reduction in the imbalance ratio
of the data. The last stage of the cascade, consisting of the support vector machine
classifier trained by means of under-sampling, is to face a classification problem with
an imbalance ratio about 1:5 -in contrast with the 1:50 at the input of the system-.
This reduction in the imbalance ratio is shown to be an effective way of tackling
the problem of classification in this kind of scenarios. In addition to this, one more
important feature must be outlined: the modular shape of the system lets the expert
identify new targets in the video analysis procedure, providing the chance to easily
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include them as new filter stages, and adding domain knowledge to the system in a
natural and flexible way. Through the following paragraphs, we provide a detailed
description of each specific stage of the cascade.

3.1 Stage 1: Main threshold

The aim of the first stage is to pre-filter all the video frames according to the visual
pattern of phasic contractions described in section 2.2. This is implemented by
means of the normalized intensity f1(n), defined in equation 1.

f1(n) = In −
∑4

i=−4 In+i

9
(1)

For each frame n, we take into account the 4 previous and the 4 following frames.
For each one of these 9 frames, we calculate the overall intensity, In+i, i = −4...4,
as the sum of the intensity values of its pixels. The final value of f1(n) represents a
normalized intensity of the central frame within the 9 frames sequence. Should the
central frame n be darker than its neighbors, the difference in f1(n) would tend to
be negative, and viceversa. For the specific visual pattern of phasic contractions, the
presence of an open lumen in the previous and following frames makes the central
frame of a sequence of an intestinal contraction have a higher value of intensity
than its neighbors. Thus, f1(n) is designed in order to present a high value when
the central frame of a 9 frames sequence corresponds with an intestinal contraction,
presenting a random pattern for non-contractions. A plot of f1(n) for (a) one
contraction sequence and b) one arbitrary sequence of 9 frames is pictured in Figure
8. This first stage has got one tuning parameter P1 associated to it, namely, the
threshold value from which a sequence is to pass to the next stage.

3.2 Stage 2: Rejection of turbid, wall and tunnel frames

The aim of stage two is to reject those frames which are to be not valid for analysis
according to the specifications described in section 2.2, namely, the turbid frames
and those frames where the camera is focusing on the intestinal wall. In addition
to this, those frames where the lumen appears static for a long sequence of time are
rejected as well, as these frames do not carry out motility information.

3.2.1 Turbid frames

Turbid frames are those where the presence of turbid liquid hinders the right visu-
alization of the lumen, and consequently, no motility information can be inferred
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(a) Contraction (b) Random sequence

Figure 8: Pattern of f1 for (a) one contraction and (b) one random sequence (solid
blue line). The dashed red line corresponds to the averaged pattern of all the
labelled intestinal contractions. The stage one filters sequences of frames applying
a threshold over f1.

from them. The presence of turbid liquid is characterized in terms of color, which
is usually in a range from brown to yellow, mainly centered around green. For each
frame, a color quantization is performed in the following way: each RGB compo-
nent of the image is quantized into 5 bins in a linear way, spanning all the range
of the color component. This yields to a 125-bins histogram (53), which is used as
a feature vector. A data set of characteristic turbid frames and an under-sampled
number of non-turbid frames are randomly chosen from a pool of reference studios,
and they are used to train a support vector machine classifier (SVM) [18]. The SVM
precise two main generalized parameters to be set: the kernel type and the kernel
parameter. We used a radial basis function kernel and a γ = 0.1. Equation 2 shows
the mathematical representation of the radial basis function kernel.

Krbf (x, xi) = exp
−|x − xi|2

2σ2
, γ = 1/(2σ2) (2)

The choice of the kernel and the γ parameter was obtained in a heuristical way
with an exhaustive analysis, using as a reference for validation the visual assessment
of the experts. The support vector machine classifies all the video frames into
turbid and non-turbid. In order to incorporate the dynamic characteristics of the
intestinal contractions as performed in the first stage, we adopted as a final criterion
the rejection of those frames with more than 4 neighbors labelled as turbid frames
within the 9 frames sequence (the number of 4 frames was strictly based on the
experts’ assessment), letting the remaining frames pass to the next step. Figure
9(a) renders a set of example sequences rejected as turbid sequences.
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(a)

(b)

(c)

Figure 9: Three example sequences of (a) turbid, (b) wall, and (c) tunnel frames.
The system detects and rejects these sequences as system negatives in the second
stage.

3.2.2 Wall and tunnel frames

Both wall and tunnel frames are characterized by not carrying out motility infor-
mation, although they have different sources of origin. The former are due to the
stable orientation of the camera towards the intestinal wall, keeping the intestinal
lumen out of the field of view, while the latter correspond to a stable orientation of
the camera focusing the intestinal lumen for a span of time where no motility activ-
ity is present (in this sense, the resulting sequences show the intestinal lumen as a
tunnel, during a undefined period of time). Figure 9 shows three different examples
of (b) wall and (c) tunnel sequences. Both wall and tunnel frames were described
by means of the sum of the area of the lumen throughout the sequence of 9 frames.
In order to estimate the area of the lumen in each frame, a Laplacian of Gaussian
filter was applied (LoG) [19]. The LoG filter is a second order symmetric filter with
a tuning parameter σ which plays the role of a scale parameter. The output of
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the LoG is high when a dark spot is found, providing a higher response the closer
the diameter of the spot is fitting the span of the Gaussian defined by σ, and the
higher the contrast is between the dark spot and its bounds. The value of σ was
fixed to σ = 3, the minimum size of the lumen in the central frame of a contraction
sequence (this was straightforward to obtain after testing different values of several
contraction sequences). The whole procedure is graphically deployed in Figure 10:
For each sequence of 9 frames, the LoG filter is applied (second row); following, a
greater-than-zero threshold is performed to the filter output, which provides a bi-
nary image with one or more connected components or blobs (third row). In case
that only one blob is obtained, its area is taken as the lumen area; in case that sev-
eral blobs are obtained, the one with the highest global response of the filter (i.e.,
presumed the one with the highest contrast and best fitting in size) is selected. The
last row in Figure 10 shows an example of the lumen segmentations obtained with
this procedure.

Figure 10: Original image, LoG filter response, binary blob and final lumen segmen-
tation for the nine frames of an intestinal contraction sequence.

The subsequent characterization of wall and tunnel frames is straightforward: the
system classifies a frame as a wall frame if the sum of the lumen area throughout
the 9 frames sequence is lesser than a certain threshold, while the same frame is
classified as a tunnel frame if the sum of the lumen area throughout the 9 frames
sequence is greater than certain threshold. These two values yield to the tuning
parameters of the system P2 and P3.

3.3 Stage 3: The final classifier

The last stage of our approach consists of a SVM classifier, which receives as an in-
put the output of the second stage of the cascade, with an imbalance ratio which has
been typically reduced form 1 : 50 to 1 : 5 frames. The output of the support vector
classifier consists of frames suggested to the specialist as the candidates for intestinal
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contractions in the analyzed video. The choice of the SVM is underpinned by its
robust mathematical background, being one of the most widely used classification
techniques, with a remarkable success in multiple and diverse applications through
the recent years [20]. In addition to this, one of the main considerations taken into
account for the selection of the SVM classifier was its sensitivity to the skewed dis-
tribution of the data sets. It has been shown that the learning mechanisms of SVM
makes this classifier an attractive candidate for dealing with moderated imbalanced
ratios. The SVM takes into account samples which are close to the decision bound-
aries, namely, the support vectors, and it tends to be unaffected by samples lying
far away. In addition to the former, stratified sampling techniques (such as under-
sampling the majority class, over-sampling the minority class, or artificially creating
new samples) have been proved to be efficient in the improvement of performance
of several classifiers, including support vector classifiers [21]. Our approach imple-
ments under-sampling in the learning strategy. Several methods of sampling were
tested, and under-sampling resulted the one with the highest reliability (a detailed
analysis and discussion about the design of these experiments can be found in [22]).
A radial basis function kernel was used with a γ = 0.01 set in a heuristical way.
The γ parameter controls the operation point of the support vector classifier, and
corresponds to the fourth tuning parameter of the system, P4.

In order to characterize the intestinal contractions, a set of 37 features were
computed from first and second order statistics obtained from the concurrence ma-
trix [23], and local binary patterns [24]. These features were estimated from a more
basic feature set such as the mean intensity described in section 3.1, and the area and
contrast of the lumen, as described in section 3.2.2. As performed in the previous
stages, a feature vector was constructed taking into account the previous and fol-
lowing 4 frames, so that a final 37x9 = 333 dimensional feature vector was assigned
to each frame. In order to address the high dimensionality of the feature space, a
sequential forward feature selection method was used based on the performance of
the SVM.

4 Results

Our experimental tests were performed using 10 videos obtained from 10 different
fasting volunteers (without eating or drinking in the previous 12 hours to the studio),
aged between 22 and 33, at the Digestive Diseases Dept. of the General Hospital de la
Vall D’Hebron in Barcelona, Spain. The endoscopic capsules used were developed by
Given Imaging, Ltd., Israel [25]. The capsules dimensions were 11x26 mm, contained
6 light emitting diodes, a lens, a colour camera chip, two batteries with a mean life
of about 6 hours, a radio frequency transmitter, and an antenna. The capsule
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acquisition rate was two frames per second with a resolution of 256x256x24-bit.
For each studio, one expert visualized the whole video and labelled all the frames
showing intestinal contractions between the first post-duodenal and the first cecum
images. These findings were used as the gold standard for testing our system. The
parameter vector P was set to P 0 = {P1 = 0, P2 = 50, P3 = 650, P4 = 0.01} using
an exhaustive heuristical search, as defined in Section 2.2. Performance results
were evaluated for each studio following the leave-one-out strategy: one video was
separated for testing while the 9 remaining videos were used for training the SVM
classifiers using under-sampling.

4.1 System performance

In order to accomplish a detailed system performance analysis of our approach, we
provide the study of each separate stage in the cascade. Tables 1, 2 and 3 show
the performance results of stages 1, 2 and 3, respectively. The meaning of the
columns shown in these tables deserves a preliminary explanation: Each stage is
viewed as a black box with both an input and an output. For each stage, certain
number of frames arrive at the input (column Frames), containing a number of
intestinal contractions labelled by the expert (column Findings); this yields to
certain imbalance rate at the input of the stage, calculated as the quotient of the
non-contraction frames over the number of findings (column Imb. Rate). The
output columns consist of the number and the percentage of frames and findings
passing to the next stage, and the resulting imbalance rate. In addition to this, the
rate of lost findings, i.e., findings which were wrongly filtered as non-contractions,
and the rate of non-contractions frames, i.e., non-contractions which were wrongly
detected as contractions, is provided. The following paragraphs deploy a detailed
analysis of each stage, paying special attention to the reduction in the imbalance
rate and the accuracy of the classification performed.

• Stage 1: As we stated above, the primary aim of stage one was to pre-filter as
many frames as possible, reducing the imbalance rate without a significant loss
in contractions. Table 1 shows that the overall number of frames at the output
of stage one is about 11% the input, i.e., the system rejects 89% of the frames
in this stage. But despite this high reduction in the number of frames, almost
every finding was kept (97%), i.e., just about a 3% of the findings were wrongly
rejected as non-contractions. At the output of stage one, the imbalance ratio
was reduced about 10 times, from 61.3 to 6.9.

• Stage 2: A similar analysis can be performed for stage two. At its output,
this stage rejected about 28% of the frames, keeping the 96% of the findings
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provided by stage one. The imbalance rate was reduced to 4.6. In addition
to this, the sum of the loss of findings, taking into account both stage one
and stage two, set the rate of detected contractions at the output of stage two
about 93%, as can be observed in the column %Findings in video in Table
2. As in the previous stage, the reduction of the imbalance rate is significant,
while the loss in contractions appears to be reasonable -only 7% of all existing
contractions in video-.

• Stage 3: The output of stage three is at the same time the output of the
system. Thus, we can analyze the output of stage three both in terms of
stage performance and global performance. The stage performance is pictured
in Table 3, while the global performance analysis is deployed in Table 4 and
will be the object of study in the next paragraphs. Table 3 shows that the
SVM classifier yields to a reduction about 71% in the number of frames at the
output, keeping the 75% of the contractions provided by stage two. Moreover,
the imbalance rate of the final data set is reduced to 0.7.

Table 1: Performance analysis for the first stage of the cascade

INPUT OUTPUT
Studio Frames Findings Imb. Frames (%) Findings (%) Imb. Lost Non-Cont.

Rate Rate Findings (%) Frames (%)
Video 1 29444 747 39.4 3192 10.84% 720 96.39% 4.4 27 3.61% 2472 77.44%
Video 2 28803 529 54.4 3027 10.51% 502 94.90% 6.0 27 5.10% 2525 83.42%
Video 3 27816 575 48.4 3185 11.45% 561 97.57% 5.7 14 2.43% 2624 82.39%
Video 4 38885 733 53.0 4025 10.35% 717 97.82% 5.6 16 2.18% 3308 82.19%
Video 5 17619 356 49.5 1849 10.49% 349 98.03% 5.3 7 1.97% 1500 81.12%
Video 6 27360 476 57.5 2943 10.76% 459 96.43% 6.4 17 3.57% 2484 84.40%
Video 7 27176 918 29.6 2903 10.68% 890 96.95% 3.3 28 3.05% 2013 69.34%
Video 8 12620 150 84.1 1366 10.82% 143 95.33% 9.6 7 4.67% 1223 89.53%
Video 9 25994 206 126.2 2953 11.36% 198 96.12% 14.9 8 3.88% 2755 93.29%
Video 10 27967 397 70.4 2948 10.54% 385 96.98% 7.7 12 3.02% 2563 86.94%

Avg: 61.3 10.78% 96.65% 6.9 3.35% 83.01%

Table 2: Performance analysis for the second stage of the cascade
OUTPUT

Studio Frames (%) Findings (%) Imb. Lost Non-Cont. % Findings
Rate Findings (%) Frames (%) in Video

Video 1 2774 86.90% 697 96.81% 4.0 23 3.19% 2077 74.87% 93.31%
Video 2 2346 77.50% 474 94.42% 4.9 28 5.58% 1872 79.80% 89.60%
Video 3 2623 82.35% 548 97.68% 4.8 13 2.32% 2075 79.11% 95.30%
Video 4 3170 78.76% 673 93.86% 4.7 44 6.14% 2497 78.77% 91.81%
Video 5 1740 94.10% 341 97.71% 5.1 8 2.29% 1399 80.40% 95.79%
Video 6 2288 77.74% 453 98.69% 5.1 6 1.31% 1835 80.20% 95.17%
Video 7 2692 92.73% 869 97.64% 3.1 21 2.36% 1823 67.72% 94.66%
Video 8 804 58.86% 134 93.71% 6.0 9 6.29% 670 83.33% 89.33%
Video 9 678 22.96% 184 92.93% 3.7 14 7.07% 494 72.86% 89.32%
Video 10 1538 52.17% 363 94.29% 4.2 22 5.71% 1175 76.40% 91.44%

Avg: 72.41% 95.77% 4.6 4.23% 77.35% 92.57%
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Table 3: Performance analysis for the third stage of the cascade
OUTPUT

Studio Frames (%) Findings (%) Imb. Lost Non-Cont. % Findings
Rate Findings (%) Frames (%) in Video

Video 1 904 32.59% 595 85.37% 0.5 102 14.63% 309 34.18% 79.65%
Video 2 607 25.87% 343 72.36% 0.8 131 27.64% 264 43.49% 64.84%
Video 3 646 24.63% 405 73.91% 0.6 143 26.09% 241 37.31% 70.43%
Video 4 981 30.95% 547 81.28% 0.8 126 18.72% 434 44.24% 74.62%
Video 5 433 24.89% 266 78.01% 0.6 75 21.99% 167 38.57% 74.72%
Video 6 768 33.57% 339 74.83% 1.3 114 25.17% 429 55.86% 71.22%
Video 7 835 31.02% 603 69.39% 0.4 266 30.61% 232 27.78% 65.69%
Video 8 189 23.51% 111 82.84% 0.7 23 17.16% 78 41.27% 74.00%
Video 9 228 33.63% 122 66.30% 0.9 62 33.70% 106 46.49% 59.22%
Video 10 363 23.60% 248 68.32% 0.5 115 31.68% 115 31.68% 62.47%

Avg: 28.42% 75.26% 0.7 24.74% 40.09% 69.69%

Finally, the global performance of the system, viewing all the steps in the cascade
as a whole black box, can be faced in multiple ways: From a clinical point of view, the
experts are interested in assessing how many of the existing contractions our system
is able to detect, namely, the system sensitivity, how many of the existing non-
contractions our system is able to reject, namely, the system specificity, and finally,
which the ratio between false contractions and real contractions at the output of the
system is, i.e., the system precision. In addition to the latter, a ratio between the
false contractions at the output of the system and the existing contractions in the
video provides the expert with useful information (we define this quantity as false
alarm rate, FAR). A rigorous definition of the former quantities in terms of true
positives (TP), true negatives (TN), false positives (FP) and false negatives (FN)
can be stated in the following way:

Sensitivity Specificity FAR Precision
TP

TP+FN
TN

TN+FP
FP

TP+FN
TP

TP+FP

Table 4 summarizes the performance results of the cascade system: Our approach
achieves an overall sensitivity of 69.68%, picking 80% for the studio referred as Video
1. The high overall specificity value of 99.59% is typical of imbalanced problems, and
for this reason it is not generally useful for performance assessment tasks. However,
FAR and precision carry out insightful information about what the output is like.
The resulting precision value of 59.91% tells us that 6 out of 10 frames in the output
correspond to true findings. FAR is similar, but in terms of noise (the bigger the
FAR, the larger the number of false positives), and normalized by the number of
existing contractions. For different videos providing an output with a fixed precision,
those with the highest number of findings in video will have lower FAR. In this sense,
A FAR value of one tells us that we have obtained as many false positives as existing
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contractions in video. FAR and precision values are usually related, and Table 4
shows that the peeks of performance for both measures are found in the same two
studios (Video 6 and Video 7, outlined in bold type).

Table 4: Global system performance
Studio Sensitivity Specificity FAR Precision

Video 1 595/747 79.65% 29135/29444 98.95% 309/747 41.37% 595/904 65.82%
Video 2 343/529 64.84% 28539/28803 99.01% 264/529 49.90% 343/607 56.51%
Video 3 405/575 70.44% 27575/27816 99.13% 241/575 41.91% 405/646 62.69%
Video 4 547/733 74.65% 38451/38885 98.88% 434/733 59.21% 547/981 55.76%
Video 5 266/356 74.72% 17452/17619 99.05% 167/356 46.91% 266/433 61.43%
Video 6 339/476 71.22% 26931/27360 98.43% 429/476 90.13% 339/768 44.14%
Video 7 603/918 65.69% 26944/27176 99.15% 232/918 25.27% 603/835 72.22%
Video 8 111/150 74.00% 12542/12620 99.38% 78/150 52.00% 111/189 58.73%
Video 9 122/206 59.22% 25888/25994 99.59% 106/206 51.45% 122/228 53.51%
Video 10 248/397 62.46% 27852/27967 99.59% 115/397 28.96% 248/363 68.32%

Avg: 69.68% 99.12% 48.71% 59.91%

In addition to the former numerical performance analysis, a more qualitative
insight into the different sequences of positives and negatives provided by the system
deserves to be accomplished. Figure 11 shows a set of paradigmatic examples for (a)
detected contractions (true positives), (b) not detected contractions (false negatives),
and (c) sequences which had not been previously labelled by the experts, but which
our system classified as contractions (false positives). The detected contractions
basically correspond to the paradigm of phasic contractions described in Section 2.2.
In this sense, clear patterns of the intestinal lumen closing and opening are shown. It
must be noticed that the presence of turbid liquid in some frames does not result in
a rejection of this sequence by the turbid detector, because only the clearest turbid
sequences are rejected. The not detected contractions share some common features:
on the one hand, the open lumen is not always present at the beginning and the end
of the sequence, both because the camera is not pointing towards the longitudinal
direction of the gut, or because the selected contraction is spanning for more than
the 9 frames -this could be likely linked to the blurring definition border between
short tonic contractions and phasic contraction-. Moreover, the motion impression
that the expert perceives during the video visualization is not present in the deployed
sequence of frames. In this sense, we performed some tests consisting of showing
the experts a set of paradigmatic sequences containing doubtful contractions both
by visualizing them in the video at a visualization ratio of 3 frames per second,
and showing the same sequences deploying the 9 frames as in Figure 11. We found
that the experts usually labelled a higher number of contractions during the video
visualization than looking at the deployed sequence. This fact drives us to think that
the motility characterization should be performed in a more subtle detail, in order
to detect the apparently slight changes in some sequences shown in Figure 11(b),
but which actually seem to be clear for the expert during the visualization process.
Finally, the false positives analysis supply very interesting results: On the one hand,

262 Pattern Recognition : Progress, Directions and Applications



(a) (b) (c)

Figure 11: Some example sequences provided by the system. (a) Correctly detected
contractions. (b) Non-detected contractions (false negatives). (c) Sequences which
had not been labelled by the experts, but detected as contractions (false positives).

our system shows its ability to detect real contractions which the experts did not
get to label -an example of these sequences is rendered in the fifth row of Figure
11(c). This is a reasonable result, since one of the main drawbacks associated with
motility assessment by manual labelling is the growing stress and fatigue which takes
place during visualization, yielding to a loss of effectiveness in the final outcome. A
rough study over the false positives of the ten analyzed videos showed that about
the 10% of the false positives consisted of this kind of sequences. On the other
hand, the sequences shown in Figure 11(c) display the inherent difficulty related to
the high variability of patterns present at the output of the system: The lateral
movement of the camera while focusing the lumen which can be confused with the
pattern of its contraction, the differences in illumination creating shadows which can
be confused with the lumen, the multiple patterns of wrinkles which can provide a
high response to the lumen detector, and the residual presence of patterns of turbid
liquid, share the main responsibility in the false positives. We suggest that many
of these problems may be tackled by a deeper study about the textural information
provided by the lumen, both in the relaxed stage and the contraction activity. This
issue, and some other proposed approaches, are deeply deployed in Section 6.
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4.2 Validation of the system operation point

Providing that the set of parameters P 0 = {P 0
1 , P 0

2 , P 0
3 , P 0

4 }, was obtained in an ex-
haustive heuristical search, we must assess that P 0 does correspond with an optimal
operation point, in terms of system performance. In order to assess this issue, we
proceeded with a forward-propagation algorithm for parameter selection, which is
deployed in detail in Appendix A. The procedure used essentially matches the follow-
ing highlights: We reset all the parameters to P 0, and established a range of possible
values for each of them: 16 values for P1 within the interval [0:15], 11 values for P2

within the interval [10:210], 11 values for P3 within the interval [500:1000], and the 8
heuristically selected values for P4 [0.001,0.005,0.010,0.030,0.050,0.100,0.500,1.000].
The choice of these intervals was performed based on the minimum and maximum
values for each stage. The interval of the last parameter (the SVM γ) was carefully
selected based on the observation of a substantial variation of the classifier perfor-
mance. After the initialization step, the system was evaluated for all the possible
values of P1 within the defined range, and the best operation point (PBest

1 ) was
selected according to the performance criteria defined in Appendix A. The value
of P 0

1 was substituted by PBest
1 , repeating the same procedure for the rest of the

parameters in a sequential way (P2, P3 and P4). The whole procedure was repeated
5 runs and the final set PBest was obtained by averaging PBesti,i=1:5 .

Both the fast forward algorithm, and the performance criteria chosen are justi-
fied by the following reasons: On the one hand it must be taken into account that
each single parameter modification has impact on the frames which are to be filtered
by each specific stage, not only in the final assessment test, but also in the videos
which are used for training in the leave-one-out strategy. In other words, when we
vary one parameter, we must re-run all the system for each one of the 9 videos
used for training, and we must apply a new leave-one-out strategy for each of them,
training their classifiers using the 8 remaining videos. This clearly appears not to be
computationally affordable using another parameter selection strategy which would
imply a substantial increase in its computation time. On the other hand, a perfor-
mance criterion function based on the global classification error does not appear to
be a reliable metric in this context. In order to tackle the issue of performance as-
sessment in imbalanced problems, several authors have proposed different solutions,
including the use of the g-metric, the F-metric, and others [21]. Among the clini-
cal community, the use of a trade-off between sensitivity and some other measure
is widely extended. For our case, we demanded our experts to provide us with the
reference of the performance threshold which should be used in the trad-off function,
arriving at a final compromise with Sensitivity ≥ 70% . Finally, we implemented
this criterion within the criteria function defined in Appendix A.
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In order to accomplish a graphical analysis of this procedure, let us fix our atten-
tion on the ROC curves plots shown if Figure 12. In ROC curves, both sensitivity
and specificity are plotted (properly speaking, the fp-ratio is plotted, defined as 1-
specificity -notice the difference in the axes scale-) rendering the possible operation
points of the system, and constituting a helpful tool for performance analysis. Fig-
ure 12 plots the points of the ROC curves segments corresponding to the different
operation points provided by the different values of the parameter vector P after 5
runs. Each run is represented with a different symbol and color. Each graph (a),
(b), (c) and (d) corresponds with one parameter in P (P1, P2, P3 and P4). Figure 13
shows the points of the same ROC curves segments clustered by the same parame-
ter. In these plots, each operation point is centered in the mean value of sensitivity
and fp-ratio after the 5 runs, and the length of the ellipses axes is proportional to
its standard deviation. ROC curves in Figure 12 show that our system appears to
be robust, in the sense that the trade off between sensitivity and specificity is kept
for each run. The less fp-ratio, the less sensitivity is achieved. Furthermore, our
system shows to be stable, in the sense that for several runs, the resulting operation
point is confined in the ellipses drawn in the plots rendered in Figure 13, showing
no hysterical responses. We can observe the monotonically growing curves for the
different parameter values, and the global displacement of the curve segment from
the 60% to the 70% of sensitivity - (a) to (c)-. The parameter P4 (γ value of SVM)
presents the widest range of variability, being consistent with the role of γ, which
controls the margins which directly affect the support vectors used for classification.

The final performance of the system was calculated in two different ways: 1)
averaging the performance point of the 5 runs of the validation procedure tuned with
PBesti,i=1:5 , and 2) averaging 5 runs of the system tuned in PBest. Table 5 shows these
results in comparison with the performance of the system tuned to P 0, exposed in
the previous subsection. The final outcome confirms our hypothesis over P 0, since
the confidence intervals of the performance values for the heuristically obtained
parameters and those provided by the forward-propagation algorithm overlap both
for sensitivity and FAR, assessing the equivalence of P 0 and PBest in terms of
performance.

Table 5: Performance operation point for the different parameters
Parameter Sens.(std) FAR(std)
P 0 68.88 (0.51) 46.96 (0.79)
PBesti,i=1:5 69.35 (1.10) 47.96 (1.58)
PBest 69.68 (0.44) 48.72 (0.54)
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Figure 12: ROC curves segments for the forward parameter selection procedure for
(a) P1, (b) P2, (c) P3 and (d) P1. Each symbol represents each of the different 5
runs. The different points of each symbol represent the different performance pairs
of sensitivity vs. fp-ratio.
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Figure 13: ROC curves segments for the forward parameter selection procedure
for (a) P1, (b) P2, (c) P3 and (d) P1. The points in Figure 12 are grouped by its
parameter value, instead of runs. The mean of each ellipse represent the mean of the
performance pair obtained for that parameter after 5 runs. The exes of the ellipses
are related to the resulting mean variance.
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5 Conclusion

This work addressed the problem of the automatic detection of intestinal contrac-
tions in capsule video endoscopy, a novel and highly challenging issue in medical
imaging. The main novelty of our contribution is based on tackling the assessment
of intestinal motility with a machine learning approach, which joins both classical
image processing techniques and the use of diverse strategies for facing the low preva-
lence of contractions in video. The main outcome is that we turned a useful but not
feasible clinical routine, such as the manual labelling of intestinal contractions in
video endoscopy studios, into a feasible clinical routine by means of their automatic
detection, obtaining reasonable performance results.

We showed the design of the system ,in terms of sequential stages, to be helpful
from a two-fold perspective: On the one hand, this approach lets the experts iden-
tify different features related to intestinal motility in capsule video endoscopy, such
as the presence of high content of intestinal juices which hinders the video visual-
ization, or the detection of spans of time with no motility activity. By using this
modular perspective, domain knowledge can be easily added to the system by the
experts, by means of the inclusion of new sequential stages to the cascade. On the
other hand, we showed the rejection of negatives in a sequential way to be a useful
strategy for dealing with the skewed distribution of positives -i.e., contractions- and
negatives -i.e., non-contractions- along the video data. We provided a detailed ex-
planation and study of the different steps that we defined in the cascade, showing
intermediate measures of performance for each stage. In addition to this, a general
validation study of the different parameters used in the cascade was deployed. Fi-
nally, we provided the global performance point of our system both in a qualitative
and a quantitative way, by means of usual performance measures such as sensitivity,
specificity and precision, and by introducing our own false alarm rate (FAR) as a
useful metric for the specialists.

6 Future work

Several challenging issues are part of our current and future lines of work: 1) The
search of optimal descriptors for the intestinal contractions sequences in capsule
video endoscopy appears as an open fieldwork. The main approaches we are dealing
with include more sophisticated textural descriptors. In this sense, we suggest that
the inclusion of information regarding the wrinkle pattern which generally appears
associated with the contracted lumen might be studied with deeper attention. 2)
The use of applied techniques to handle the skewed distributions of the data sets
should deserve, from our point of view, a special consideration as well. Although
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under-sampling together with SVM appears to provide a reasonable performance
in our data set, we believe that an improvement in the classification results can be
achieved, both automatically identifying wide regions of the feature space associ-
ated with non-contractions, and improving the classifier performance by means of
ensemble methodologies [26]. 3) Finally, the performance assessment of this kind of
clinical scenarios present inherent problems due to the lack of viability in labelling
all the video frames in a explicit way as positives or negatives. We are carrying out
research in order to develop interactive tools which could be used by the experts in
order to provide useful feedback information which could help us to detect specific
patterns of motility. All these strategies, together with the extension of our system
to the analysis of tonic contractions and postprandial patients, are part of current
experiments that our group is developing in close contact with our group of special-
ists. We are to present the impact of this novel methodology in terms of full clinical
assessment and the evolution of the lines of work described above for future pieces
of research.

A Fast-forward parameter selection algorithm

1: BEGIN
2: SET ranges for parameters:
3: R1 → [0 : 15] {16 values}
4: R2 → [10 : 210] {11 values}
5: R3 → [500 : 1000] { 11 values}
6: R4 → [0.001, 0.005, 0.010, 0.030, 0.050, 0.100, 0.500, 1.000] {8 values}
7: for i = 1 to 5 do
8: Set parameters: P = P 0 = {P 0

1 = 0, P 0
2 = 50, P 0

3 = 650, P 0
4 = 0.01} {initialization}

9: for j = 1 to 4 do
10: Calculate the system performance substituting P 0

j with each value of Rj .
11: Apply the Performance Criteria to obtain P Best

j .
12: Substitute P 0

j with P Best
j in P .

13: end for
14: P Besti = {P Best

1 , P Best
2 , P Best

3 , P Best
4 }

15: end for
16: P Best = avg(P Besti)
17: END

For all the performance pairs (Sensitivity, FAR) obtained for each parameter:
if For all the pairs, Sensitivity ≥ 70 then

We chose the parameter that achieves the higher sensitivity.
else

We select the two parameters with a closest value to 70(higher or lower)
We choose the parameter which minimizes the error function:
sens ∗ (a(sens)2 + b(FAR)2), a, b = 1

end if
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Abstract

The aim of this work is the evaluation of different multi-scale filter banks,
mainly based on oriented Gaussian derivatives and Gabor functions, to be used
in the generation of robust features for visual object categorization. In or-
der to combine the responses obtained from several spatial scales, we use the
biologically inspired HMAX model [1]. We have tested the different sets of fea-
tures on the challenging Caltech 101-object categories database, and we have
performed the categorizarion procedure with AdaBoost, Support Vector Ma-
chine and JointBoosting classifiers. Features based on second order Gaussian
derivatives, combined with JointBoosting classifiers, achieve a 46.3% correct
classification rate over the Caltech-101 database.

Keywords: object categorization, feature extraction, filter banks, Gaussian deriva-
tives, Gabor.

1 Introduction

The Marr‘s theory [2] supports that in the early stages of the vision process, there are
cells that respond to stimulus of primitive shapes, such as corners, edges, bars, etc.
Young [3] models these cells by using Gaussian derivative functions. Riesenhuber &
Poggio [1] propose a model for simulating the behavior of the Human Visual System
(HVS), at the early stages of vision process. This model, named HMAX, generates
features that exhibit interesting invariance properties (illumination, position, scale
and rotation). More recently, Serre et al. [4], based on HMAX, propose a new
model for image categorization adding to the HMAX model a learning step and
changing the original Gaussian filter bank by a Gabor filter bank. They argue that
the Gabor filter is much more suitable in order to detect local features. Nevertheless
no experimental support has been given.

Different local feature based approaches are used in the field of object categoriza-
tion in images. Serre et al. [4] use local features based on filter responses to describe
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objects, achieving a high performance in the problem of object categorization. On
the other hand, different approaches using grey-scale image patches, extracted from
regions of interest, to represent parts of objects has been suggested, Fei-Fei et al.
[5], Agarwal et al. [6], Leibe [7]. But, at the moment, there is not a clear advantage
from any of these approaches. However, the non-parametric and simple approach
followed by Serre et al. [4] in his learning step suggests that a lot of discriminative
information can be learnt from the output of filter banks. Computing anisotropic
Gabor features is a heavy task that only is justified if the experimental results show
a clear advantage on any other type of filter bank.

The aim of this work is to carry out an experimental study in order to propose a
new set of simpler filter banks, comparing the local features based on a Gabor filter
banks with the ones based on Gaussian derivative filter banks. These features will
be applied to the object categorization problem.

In section 2 of this paper, we review the use of Gaussian functions as local
descriptors. In section 3, we introduce the proposed filter banks for object catego-
rization. In section 4, we describe the experiments and present the experimental
results. And finally, in section 5, we present the summary and our conclusions.

2 Using filters to describe images

Koenderink et al. [8] propose a methodology to analyze the local geometry of the
images, based on the Gaussian function and its derivatives. Several optimization
methods are available to perform efficient filtering with those functions [9, 10, 11].
Furthermore, steerable filters [12, 13] (oriented filters whose response can be com-
puted as linear combination of other responses) can be defined based on Gaussian
functions.

Yokono & Poggio [14] show, empirically, the excellent performance achieved by
features created with filters based on Gaussian functions, applied to the problem of
object recognition. In other published works, as Varma et al. [15], Gaussian filter
banks are used to describe textures.

Our goal is to evaluate the capability of different filter banks, based on Gaussian
functions, for encoding information usable for object categorization. We will use the
biologically inspired HMAX model to combine responses of filters at different scales.
In particular, HMAX consists of 4 types of features: S1, C1, S2 and C2. S1 features
are the lowest level features, and they are computed as filter responses, grouped into
scales; C1 features are obtained by combining pairs of S1 scales with the maximum
operation; and, finally, C2 are the higher-level features, which are computed as the
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maximum value of S2 from all the positions and scales. Where S2 features 1 measure
how good is the matching of one C1 feature in a target image.

3 Our proposed multi-scale filter banks

Due to the existence of a large amount of works based on Gaussian filters, we
propose to use, in the first level of the HMAX method, filter banks compound by
the Gaussian function and its oriented derivatives.

The functions used in this work are defined by the following equations:
a) Isotropic Gaussian:

G0(x, y) =
1

2πσ2
exp

(
−

x2 + y2

2σ2

)
(1)

b) First order Gaussian derivative:

G1(x, y) = −
y

2πσxσ3
y

exp

(
−

x2

2σ2
x

−
y2

2σ2
y

)
(2)

c) Second order Gaussian derivative:

G2(x, y) =
y2 − σ2

y

2πσxσ5
y

exp

(
−

x2

2σ2
x

−
y2

2σ2
y

)
(3)

d) Laplacian of Gaussian:

LG(x, y) =
(x2 + y2 − 2σ2)

2πσ6
· exp

(
−

x2 + y2

2σ2

)
(4)

In order to improve the information provided by the features, we propose to
include, in the lowest level, the responses of the Forstner operator [16], used to
detect regions of interest. For each image point, we can compute a q value, in the
range [0, 1], by using equation 6.

N(x, y) =
∫

W
M(x, y)dxdy ≈ ΣMi,j (5)

q = 1 −

(
λ1 − λ2

λ1 + λ2

)2

=
4detN

(trN)2
(6)

1Let Pi and X be patches, of identical dimensions, extracted at C1 level from different images,
then, S2 is defined as: S2(Pi, X) = exp(−γ · ‖X − Pi‖

2), where γ is a tunable parameter.
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Figure 1: Sample filter banks. From top to bottom: Viola, Gabor, first derivative
of Gaussian with a zero-order Gaussian, and second derivative of Gaussian with a
Laplacian of Gaussian. Orientations: 0, 45, 90 and 135

Where M is the moments matrix and W is the neighborhood of the considered
point (x, y).

We will compare our proposed filter banks with the filter banks based on Gabor
functions (as defined in [4]). On the other hand, Viola and Jones, in their fast
object detector [17] use filters, which are simplified versions of first and second order
Gaussian derivative filters, to extract local features. Since those filters achieve very
good results and are computable in a very efficient way, we will include them in our
comparison.

Figure 1 shows sample filter banks: Viola, Gabor, first order Gaussian derivatives
with an isotropic zero-order Gaussian, and second order Gaussian derivatives with
an isotropic Laplacian of Gaussian.

4 Experiments

We have chosen the Caltech 101-object categories 2 to perform the experiments.
This database has become, nearly, the standard database for object categorization.
It contains images of objects grouped into 101 categories, plus a background category
commonly used as the negative set. This is a very challenging database because the
objects are embedded in cluttered backgrounds and have different scales and poses.
Figure 2 shows some sample images drawn from diverse categories of this database.
In order to make a robust comparison, we have discarded the 15 categories that
contains less than 40 samples. All the images were normalized in size, so that the

2The Caltech-101 database is available at http://www.vision.caltech.edu/
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Figure 2: Samples from diverse categories of the Caltech-101 database.

longer side had 140 pixels and the other side was proportional, to preserve the aspect
ratio.

4.1 Multi-scale filter banks evaluation

We will compute biologically inspired features based on different filter banks. For
each feature set, we will train binary classifiers for testing the presence or absence
of objects in images from a particular category. The set of the negative samples
is compound by images of all categories but the current one, plus images from the
background category. This strategy differs from the classic one, where the negative
set is compound only by background images, because we are interested in studying
the capability of the features to distinguish between different categories, and not
only in distinguishing foreground from background.

The eight filter banks defined for this experiment are the following:

(1) Viola (2 edge filters, 1 bar filter and 1 special diagonal filter);
(2) Gabor (as [4]);
(3) anisotropic first-order Gaussian derivative;
(4) anisotropic second-order Gaussian derivative;
(5) (3) with an isotropic zero-order Gaussian;
(6) (3) with a Laplacian of Gaussian and Forstner operator;
(7) (3), (4) with a zero order Gaussian, Laplacian of Gaussian and Forstner op;
(8) (4) with Forstner operator.
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The Gabor filter and the anisotropic first and second order Gaussian derivatives
(with aspect-ratio equals 0.25) are oriented at 0, 45, 90 and 135. All the filter banks
contain 16 scales (as [4]).

The standard deviation used for the Gaussian-based filter banks is equal to a
quarter of the filter-mask size. Table 1 shows the value of the parameters for the
filter banks, where FS is the size (in pixels) of the 16 mask-filters and σ is the related
standard deviation of the functions.

FS 7 9 11 13 15 17 19 21
σ 1.75 2.25 2.75 3.25 3.75 4.25 4.75 5.25

FS 23 25 27 29 31 33 35 37
σ 5.75 6.25 6.75 7.25 7.75 8.25 8.75 9.25

Table 1: Filter mask size (FS ) and filter width (σ) for Gaussian-based filter banks.

In these filter banks we have combined linear filters (Gaussian derivatives of
different orders) and non-linear filters (Forstner operator), in order to study if the
mixture of information of diverse nature enhances the quality of the features.

We will generate features (named C2) following the HMAX method and using
the same empirical tuned parameters proposed by Serre et al. in [4]. The evaluation
of the filters will be done following a strategy similar to the one used in [5]. From one
single category, we draw 30 random samples for training, and 50 different samples
for test, or less (the remaining ones) if there are not enough in the set. The training
and test negative set are both compound by 50 samples, randomly chosen following
the strategy previously explained. For each category and for each filter bank we will
repeat 10 times the experiment.

Results During the patch 3 extraction process, we have always taken the patches
from a set of prefixed positions in the images. Thereby, the comparison is straight-
forward for all filter banks. We have decided, empirically (fig. 3), to use 300 patches
(features) per category and filter bank. If those 300 patches were selected (from a
huge pool) for each individual case, the individual performances would be better,
but the comparison would be unfair.

In order to avoid a possible dependence between the features and the type of
classifier used, we have trained and tested, for each repetition, two different classi-
fiers: AdaBoost (with decision stumps) [18] and Support Vector Machine (linear)

3In this context, a patch is a piece of a filtered image, extracted from a particular scale. It is
three dimensional: for each point of the patch, it contains the responses of all the different filters,
for a single scale.
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Figure 3: Evolution of performance versus number of patches. Evaluated on five
sample categories (faces, motorbikes, car-side, watch, leopards), by using three dif-
ferent filter banks: Gabor, first order Gaussian derivative and second order Gaussian
derivative. About 300 patches, the achieved performance is nearly steady.

[19].
For training the AdaBoost classifiers, we have set two stop conditions: a max-

imum of 300 iterations (as many as features), or a training error rate lower than
10−6. On the other hand, for training the SVM classifiers, we have selected the
parameters through a cross-validation procedure.

The results obtained for each filter bank, from the classification process, are
summarized in table 2. For each filter bank, we have computed the average of the
all classification ratios, achieved for all the picked out categories, and the average
of the confidence intervals (of the means). The top row refers to AdaBoost and
the botton row refers to Support Vector Machine. The performance is measured at
equilibrium-point (when the miss-ratio equals the false positive ratio).

- Viola Gabor FB-3 FB-4 FB-5 FB-6 FB-7 FB-8

AdaB 78.4 , 4.3 81.4 , 3.9 81.2, 3.9 81.4 , 4.2 81.9 , 3.3 77.9 , 4.5 80.3 , 4.3 78.1, 4.0
SVM 84.2 , 2.3 85.5 , 2.5 84.1 , 3.6 86.0 , 3.3 84.1 , 3.0 82.6 , 2.7 82.8 , 2.4 82.7, 2.6

Table 2: Results of classification using different filter banks: averaged performance
and averaged confidence intervals. First row: AdaBoost. Second row: SVM linear.

Figure 4 shows the averaged performance achieved, for the different filter banks,
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by using AdaBoost and SVM. In general, by using this kind of features, SVM out-
performs AdaBoost.
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Figure 4: Comparing the filter banks with AdaBoost and SVM classifiers. From
left to right: (1) Viola, (2) Gabor, (3) 1st deriv., (4) 2nd deriv, (5) 1st deriv. with
0 order, (6) 1st deriv. with LoG and Forstner op., (7) G0, 1oGD, 2oGD, LoG,
Forstner, (8) 2oGD and Forstner.

If we focus on table 2, we see that the averaged performances are very simi-
lar. Also, the averaged confidence intervals are overlapped. If we pay attention
only at the averaged performance, the filter bank based on second order Gaussian
derivatives, stands out slightly from the others.

So, our conclusion for this experiment is that Gaussian filter banks represent a
clear advantage in comparison to the Gabor filter bank. It is much better in terms
of computational burden and is slightly better in terms of categorization efficacy.
However, depending on the target category, one filter bank may be more suitable
than other.

4.2 Multicategorization

In this experiment, we deal with the problem of multicategorization on the full
Caltech 101-object categories, included the background category. The training set
is compound by the mixture of 30 random samples drawn from each category, and
the test set is compound by the mixture of 50 different samples drawn from each
category (or the remaining, if it is less than 50). Each sample is enconded by using
4075 patches [4], randomly extracted from the full training set. These features are
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computed by using the oriented second order Gaussian derivative filter bank.
In order to perform the categorization process, we will use a Joint Boosting

classifier, proposed by Torralba et al. [20]. Joint Boosting trains, simultaneously,
several binary classfiers which share features between them, improving this way the
global performance of the classification.

Under these conditions, we have achieved an average 46.3% of global correct
categorization (chance is below 1% for this database), where more than 40 categories
are over 50% of correct categorization. By using only 2500 features, the performance
is about 44% (fig. 5.c). On the other hand, if we use 15 samples per category for
training, we achieve a 39.5% rate. Figure 5 shows the confusion matrix for the 101
categories plus background (by using 4075 features and 30 samples per category).
For each row, the highest value should belong to the diagonal.

Other results on this database, using diverse technics, are: Serre 42% [4], Holub
40.1% [21], Grauman 43% [22], and, the best result up to our knowledge, Berg 48%
[23].

Figure 5.b shows the histogram of the individual performances achieved for the
101 object categories, in the multiclass task. Note, that only 6 categories shows a
performance lower than 10%, and 17 categories are over 70%.

In figure 5.c, we can see the evolution of the test performance, depending on
the number of patches used for encode the samples. With only 500 patches, the
performance is about 31%. If we use 2500 patches, the performance increases up to
44%.

Figure 5.d shows how the training error evolves, yielded by the Joint-Boosting
classifier, over the 101-object categories. The error decreases with the number of
iterations following a logarithmic behavior.

Figure 6.a shows how the first 50 features selected by JointBoosting, for the
joint categorization of the 101 categories, are shared between the 102 categories
(background is included as a category). The rows represent the features and the
columns are the categories. A black-filled cell means that the feature is used to
represent the category.

Figure 6.b shows the first four features selected by JointBoosting, for the joint
categorization of the 101 object categories. The size of the first patch is 4x4 (with
4 orientations), and the size of the others is 8x8 (with 4 orientations).

In table 3, we show which categories share the first 10 selected patches. Three
of the features are used only by one single category.
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Figure 5: 101 object categories learnt with 30 samples per category and JointBoost-
ing classifier. (a) Confusion matrix for 101-objects plus background class. Global
performance is over 46%. (b) Histogram of individual performances. (c) Global test
performance vs Number of features. (d) Training error yielded by Joint Boosting.
Y-axis: logarithmic.
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# Feature Shared-Categories

1 yin yang
2 car side
3 pagoda, accordion
4 airplanes , wrench , ferry , car side , stapler , euphonium , mayfly , scissors ,

dollar bill , mandolin , ceiling fan , crocodile , dolphin
5 dollar bill, airplanes
6 trilobite , pagoda , minaret , cellphone , accordion
7 metronome , schooner , ketch , chandelier , scissors , binocular , dragonfly , lamp
8 Faces easy
9 inline skate , laptop , buddha , grand piano , schooner , panda , octopus , bonsai ,

snoopy , pyramid , brontosaurus , background , gramophone , metronome
10 scissors , headphone , accordion , yin yang , saxophone , windsor chair , stop sign ,

flamingo head , brontosaurus , dalmatian , butterfly , chandelier , binocular ,
cellphone , octopus , dragonfly , Faces , wrench

Table 3: First 10 shared features by categories.

4.2.1 Caltech selected categories database.

In this section, we focus on a subset of the Caltech categories: motorbikes, faces,
airplanes, leopards and car-side.

The filter bank used for these experiments is based on second order Gaussian
derivatives, and its parameters are the same ones than in the previous sections. 2000
patches have been used to encode the samples.

Experiment 1 We have trained JointBoosting classifiers with an increasing num-
ber of samples (drawn at random), and tested with all the remaining ones. Figure
7 shows how the mean test performance, for 10 repetitions, evolves according to
the number of samples (per category) used for training. On the left, we show the
performance achieved when 4 categories are involved, and, on the right, when 5
categories are involved. With only 50 samples, these results are already comparable
to the ones shown in [21].

Experiment 2 By using 4-fold cross-validation (3 parts for training and 1 for
test), we have evaluated the performance of the JointBoosting classifier applied to
the Caltech selected categories. The experiment is carried out with the 4 categories
used in [24, 21] (all but car-side), and, also, with the five selected categories. Table
4 and table 5 contains, respectively, the confusion matrix for the categorization
of the four and five categories. In both cases, individual performances (values of
the diagonal) are greater than 97%, and the greater confusion-error is found when
airplanes are classified as motorbikes. It is curious that the individual performances
are slightly better for the 5-categories case.
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Figure 6: 101 object categories. (a) Left: first 50 shared features selected by Joint-
Boosting. (b) Right: the first 4 features, selected by JointBoosting.

- Motorbikes Faces airplanes Leopards

Motorbikes 99.75 0.13 0.13 0
Faces 1.38 98.62 0 0

Airplanes 2.38 0 97.50 0.13
Leopards 0.50 0.50 0 99.00

Table 4: Caltech selected (as [24]). Mean performance from 4-fold cross-validation.

4.3 Towards the universal visual codebook

The goal of this experiment is to evaluate the capability of generalization of the
features generated with HMAX and the proposed filter banks. In particular, we
wonder if we could learn a category, without using patches extracted from samples
belonging to it. For this experiment we will use the Caltech-7 database (faces,
motorbikes, airplanes, leopards, cars rear, leaves and cars side), used in other papers
[24]. Each category is randomly split into two separated sets of equal size, the
training and test sets. For each instance of this experiment, we extract patches from
all the categories but one, and we focus our attention on what happens with that
category.

We have extracted 285 patches from each category, therefore each sample is
encoded with 1710 (285 × 6) patches. We train a Joint Boosting classifier with
the features extracted from 6 categories and test over the 7 categories. We repeat
the procedure 10 times for each excluded category. The filter bank used for this
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Figure 7: Performance versus number of training samples, in multicategorization
environment. Left: 4 categories. Right: 5 categories.

- Motorbikes Faces airplanes Leopards Car side

Motorbikes 99.87 0.13 0 0 0
Faces 1.15 98.85 0 0 0

Airplanes 2.00 0 98.00 0 0
Leopards 0.50 0.50 0 99.00 0
Car side 0.81 0 0 0.81 98.37

Table 5: Caltech selected (5 categories). Mean performance from 4-fold cross-
validation.

experiment is compound by 4 oriented first order Gaussian derivatives, plus an
isotropic Laplacian of Gaussian.

Table 6 shows the mean global multicategorization performance, and the indi-
vidual performance, achieved for each excluded category. We can see that all the
global results are near the 95% of correct categorization. These results suggest that
there are features that are shared between categories in a ’natural’ way, and hence
it encourages the search for the universal visual codebook, proposed in some works
[4].

5 Summary and discussion

An experimental study has been carried out in order to compare the performance
of different filter banks for the object categorization problem. We have generated
multi-scale features with eight proposed filter banks, which have been used to learn
the object categories included in the challenging Caltech-101 database. The re-
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No-face No-moto No-airp No-leop No-car rear No-leav No-car side

Global 94.7 93.7 94.8 96.8 95.9 95 93.5
Individual 98.7 96.9 96.5 94.0 88.9 91.4 88.5

Table 6: Categorization by using non-specific features. First row shows the mean
global performance (all categories) and, the second row shows the individual per-
formance (just the excluded category). It seems that the car rear and car side
categories need their own features to represent them in a better way.

sults show that the local features generated with filter banks based on Gaussian
derivatives, achieve an excellent performance in the object categorization problem
compared to the Gabor-based features. In fact, the results provided in the task
of multicategorization on the Caltech-101, combined with JointBoosting classifiers,
are very competitive compared to the state-of-the-art. However, we think that it
is necessary to study alternative options, other than including more filter banks, to
improve the achieved performance. On the other hand, we have noticed that Sup-
port Vector Machine classifiers, on average, works better than AdaBoost with this
kind of features.

As a result, we can say that the trend of building large pools of visual features,
to be shared between different object categories, seems a promising way to deal with
the problem of general object categorization.
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Abstract

Clustering techniques are widely used in many application fields like image 

analysis, data mining, and knowledge discovery, among others. In this work, we 

present a new clustering algorithm to find clusters of different sizes, shapes and den-

sities, able to deal with overlapping cluster distributions and background noise. The 

algorithm is divided in two stages, in a first step; local density is estimated at each 

data point. This local density is used to initialize the clustering grouping the objects 

around the object of local maximum density (core point). In a second stage, a hierar-

chical approach is used by merging clusters according to the introduced cluster dis-

tance, also based on local density in-formation. Experimental results on synthetic 

and real databases show the validity of the proposed method. 

Keywords: density based clustering, overlapped distributions. 

1 Introduction 

Clustering algorithms are techniques widely used to discover relevant distributions and 

relationships in databases. The problem of clustering can be defined as: Given n points 

belonging to a d-dimensional space, provided some measurement of similarity or dissimi-

larity, the aim is to divide these points into a set of clusters so that the simi-larity between 
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patterns belonging to the same cluster is maximized whereas the similarity between pat-

terns of different clusters is minimized. 

Basically, there are two approaches in clustering techniques: the partitional approach 

and the hierarchical approach [7]. The partitioning methods build a partition from the 

database of n objects in k clusters. These algorithms assume a priori knowledge about the 

number of classes in which the database must be divided. The K-means is the best known 

partitional algorithm. 

Hierarchical methods consist of a sequence of nested data partitions in a hierarchical 

structure, which can be represented as a dendogram. There exist two hierarchical ap-

proaches: agglomerative and divisive. The first one can be described in the follow-ing 

way: initially each point of the database form a single cluster, and in each level, the two 

most similar clusters are joined, until either a single cluster is reached with all the data 

points, or some stopping condition is defined, for instance, when the distance between the 

clusters is smaller than certain threshold. In the divisive approach, the process is the other 

way around. 

The Single Link (SL) and the Complete Link (CL) methods are the most well known 

hierarchical strategies [3]. Some hierarchical algorithms are based on proto-types selec-

tion, as CURE [4]. On the other hand, in density–based algorithms, the clusters are de-

fined as dense regions, where clusters are separated by low density areas [5]. Some of the 

most representative ones of this approach are DBSCAN [1], KNNCLUST [7] and SSN 

[2] algorithms. 

Some of the problems these algorithms fail to tackle are the fact that clusters are not 

completely separable, due to the overlapping of cluster distributions in usual real situa-

tions, and the presence of noisy samples. In this work we present an algorithm based on a 

hybrid strategy between the hierarchical and density-based approaches, with the aim of 

dealing with overlapped clusters and noisy samples, in order to discover the most signif-

cant density based distributions in the database. 

2 Hierarchical Clustering using Local Probability Density 

The objective of the algorithm here presented is to detect clusters of different shapes, 

sizes and densities even in the presence of noise and overlapping cluster distributions. 

The algorithm is a mixture of a density-based and a hierarchical-based approach, and it is 

divided in two stages. In the first stage, the initial clusters are constructed using a density-

based approach. In a second stage, a hierarchical approach is used, based on a cluster 

similarity function defined in terms of cluster density measures and distances, joining 

clusters until either arriving to a pre-defined number or reaching a given stop-ping crite-

rion.
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2.1 Estimating Local Density 

Let X be a set of patterns provided with a similarity measure between patterns d. Let x be 

an arbitrary element in the dataset and R>0. The neighbourhood VR of radius R of x is 

defined as the set: 

RyxdyxVR ),(/)(

and the local density p(x) of the non-normalized probability distribution at point x as: 
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where xi are the points that belong to the neighbourhood of radius R of x, VR.

In the algorithm we are going to differentiate between two concepts: core cluster and 

cluster. We will call core clusters to the sets that are obtained after applying the first stage 

of the algorithm, and we will call cluster to the sets of core clusters that will be grouped 

into clusters in a further stage. 

2.2 Defining Cluster Similarities 

As the objective of the second stage is to perform a hierarchical algorithm between the 

classes obtained in the first stage we need to define the di-similarity between two clusters. 

Given two core clusters Ci and Cj , let us define the distance between them as:  

d’(Ci, Cj) = min {d(xi,xj)};  xi, xj / xi  Ci and xj  Cj

Given two clusters Ki and Kj , let us define distance between them as: 

)),(''1(),( ji

c

mc
ji KKd

P

PP
KKd

(2)

where

d’’(Ki, Kj) = min {d’(C’, C’’)},  C’, C’’/ C’  Ki and C’’  Kj

Given a core cluster C , let us define the centre of the core cluster to the point whose 

density is maximal within the core cluster. Let x’ and x’’ be the centres of Ci and Cj re-

spectively. Therefore, let us define Pc as the minimum density of the core cluster centres 

x’ and x’’, that is, 
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In equation (2), Pm is the density of the midpoint between the two core clusters, that 

is, it is the midpoint of the border between both core clusters, which is defined as the 

midpoint between the nearest points xbi and xbj, one from each core cluster. To estimate 

the density of such a midpoint, it is interpolated from the density values of the mentioned 

points belonging to each cluster. To calculate the interpolated value, two different cases 

are taken into account when comparing the two neighbouring core clusters:  

1. If d’(Ci, Cj)>R , the midpoint do not have points in its neighbourhood of ra-

dius R, then we take Pm=0 and the distance between the clusters becomes: 

),(''1, jiji KKdKKd (3)

That is, in the cases that clusters are well separated, the di-similarity 

measurement is given by the distance between the nearest core clusters. 

2. If d’(Ci, Cj) R , the midpoint has got points in its neighbourhood from both 

core clusters. In this case, the midpoint x is defined as either the border point 

xbi from core cluster Ci or the border point xbj from core cluster Cj. In order to 

avoid negative values in expression (2), the midpoint is chosen as the border 

point such as,  

if Pc=p(x’), then x=xbi, and Pm=p(xbi)

else x=xbj, and Pm=p(xbj)

2.2 Grouping Core Clusters into Clusters 

The clustering algorithm here presented consists of a hierarchical agglomerative strategy 

based on a Single Link approach, using the di-similarity measures defined in the previous 

Section. The use of such dissimilarity measures defines the behaviour of the clustering 

process and the response to the different local distributions of the patterns in the data set. 

In a few words, the dissimilarity measure defined in (2) is aimed at considering that 

clusters are more similar when they probability distributions are either nearer in the fea-

ture space by means of a Single Link concept, or when their probability distributions are 

more overlapped. In the last case, when probability distributions are over-lapped (d’=0),

the measure of similarity becomes the probability density term that appear in equation 

(2), which is a local estimate of the mixed probability distributions at the clusters border. 

Therefore, the proposed algorithm can be summarized in two stages as follows: 
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First stage: 

Input: radius R, data points and density noise threshold 

Output: N core clusters 

1. Initially, each point of the database is assigned to a single core cluster. 

2. For each point x, calculate its neighbourhood of radius R, VR(x)

3. For each point x in the database, estimate its probability density p(x) according to 

expression (1). 

4. Assign each point x to the core cluster of the point xc in its neighbourhood, being 

xc the point with maximal density in the neighbourhood. 

5. Mark all core clusters with density less than the density noise threshold as noise 

core clusters. The rest are the resulting N core clusters. 

Second stage 

Input: N core clusters 

Output: K clusters 

1. Initially, assign each core cluster from the first stage to a cluster. Therefore, there 

are N clusters with one core cluster. 

2. Repeat until obtaining K clusters, 

2.1 Calculate the distance between each pair of clusters using expression (2) 

2.2 Join the clusters that their distance is minimum 

3 Assign the noise core clusters to a nearest. 

3 Experimental Results 

In this section, some experimental results are presented aimed at evaluating the proposed 

algorithm, hereafter named H-density, and to compare it with some other similar algo-

rithms referred in the introduction, DBSCAN, CURE and K-means. In order to test the 

algorithm, three groups of experiments are performed. The first one uses synthetic data-

bases based on overlapped Gaussian distributions, in order to see the response of the pro-

posed algorithm in these conditions. The second experiment uses two synthetic databases 

from [6], for comparison purposes, and to test the problem of the presence of noise, over-
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lapping, and clusters of different sizes and shapes. Finally, some experiments are per-

formed on two real databases. 

3.1 Gaussian Databases 

Four databases using Gaussian distribution were generated with different number of 

classes (Gaussian distributions), sizes and overlapping degrees. The number of samples 

and classes in each database is shown in Table 1. 

Table 1. Gaussian databases generated used in the experiments. 

Database No samples No classes 

G1 4000 4 

G2 6000 6 

G3 6000 3 

G4 8000 4 

The results obtained with the proposed algorithm are shown in Figure 1, where we 

can notice how the algorithm has been able to correctly detect each one of the existing 

classes, even in the presence of significant overlapping (Figure 1 right). 

The DBSCAN algorithm does not correctly detect all the classes in different data-

bases because it is not able to separate the overlapped classes. For example, in data-base 

G2 it detects 3 classes for radius 5 and some noise points (Figure 2 left). If the radius is 

increased, it obtains three or less classes. If the radius decreases, the objects of the edge 

of the three classes are separated because they stay as noise points. This can be noticed in 

Figure 2 right, where the number of noise points increases. The others databases have a 

similar behaviour. 

The CURE algorithm detects all the classes in databases G1, G3 and G4, but in data-

base G2 it correctly detects three classes. However, in the case of six classes, it cannot 

detect the 4 classes that are highly overlapped. The same happens with the K-means algo-

rithm, it detects the classes in databases G1, G3 and G4, but in the case of the database 

G2 the results depend on the initial centres (see Figure 3). 
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Figure 1. Results of the H-density algorithm on G4 (left) and G2 (right) databases. 

Figure 2. Results of the DBSCAN algorithm on G2 using radius=5, MinPts=4 (left), and 

radius=3, MinPts=4 (right). 

Figure 3. Results of the K-means algorithm on G2 with two different initializations. 
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3.2 Synthetic Databases 

In [6], some experiments were presented for the DBSCAN and CURE algorithms using 

the databases of Figure 4 (see [6] for comparison results with those algorithms). Notice 

the presence of clusters of different shape, size, noise and overlapping. Figure 4 shows 

the result of applying the proposed H-density algorithm on these databases. Note how the 

algorithm has correctly grouped the main clusters present in the data set. Figure 5 shows 

the result of the K-means algorithm for 6 clusters (left) and 9 clusters (right) of the corre-

sponding databases. The errors in the grouping are noticeable. 

Figure 4. Results of the H-density algorithm on databases from [6]. 

Figure 5. Results of the K-means algorithm on databases from [6]. Left: for 6 clusters. 

Right for 9 clusters. 
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3.3 Real Databases 

Two real databases were used in this experiment, Iris and Cancer. The first one is a data-

base of Iris plants containing 3 classes, with a total of 150 elements, 50 each of the three 

classes: Iris Setosa, Iris Versicolour, Iris Virginica. The number of attributes is 4, all nu-

meric. The first class, Iris Setosa, is linearly separated from the other two. 

In the first experiment, all the algorithms were run to obtain two classes, and all of 

them obtained 100% of correct grouping or classification, that is, all the tested algorithms 

were able to correctly separate the Setosa class from the other ones. 

In a second experiment, the algorithms were run to find three clusters. The results are 

shown in Table 2. Notice how, due to the overlapping between Versicolour and Virginica 

classes, the proposed H-density algorithm outperforms the other ones reaching a 94% 

correct classification. In the case of the Cancer database, it has 2 classes. The proposed 

H-density algorithm obtained a 95.461% of correct classification, the same as CURE 

(Table 3). 

Table 2. Classification rate of the clustering algorithm on Iris database. 

Algorithm % in two classes % in three classes 

DBSCAN 100 71.33 

CURE 100 83.33 

K-means 100 88.33 

H-Density 100 94.00 

Table 3. Classification rate of the clustering algorithms in Cancer database (two classes). 

Database DBSCAN CURE K-means H-Density 

Cancer 94.28 95.461 95.04 95.461 
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5 Conclusions and Further Work. 

A hierarchical algorithm based on local probability density information has been pre-

sented. The way the density of the probability distribution is estimated, and the use of this 

information in the introduced dissimilarity measure between clusters, provides to the 

algorithm a mechanism to deal with overlapping distributions and the presence of noise in 

the data set. The experiments carried out show satisfactory and promising results to tackle 

these problems usually present in real databases. The experiments also show the proposed 

algorithm outperforms some existing algorithms. Future work is directed to unify the 

treatment of noise and overlapping in the process, and to introduce a measure to assess 

the right number of clusters in the hierarchy. 
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Abstract

Left deterministic linear languages are a subclass of context free languages that includes
all regular languages. Recently was proposed an algorithm to identify in the limit with
polynomial time and data such class of languages. It was also pointed that a symmetric class,
right deterministic linear languages, is also identifiable in the limit from polynomial time
and data. In this paper we show that the class of the Left-Right Deterministic Languages
formed by the union of both classes is also identifiable. The resulting class is the largest
one for which this type of results has been obtained so far.

In this paper we introduce the notion of n-negative characteristic sample, that is a
sample that forces an inference algorithm to output a hypothesis of size bigger than n

when strings from a non identifiable language are provided.

Keywords: example-based learning, learning context-free languages

1 Introduction

Over the time, diverse paradigms has been proposed to formalize when a learning
process is successful. One of those paradigms is the identification in the limit [1]. In
the identification in the limit paradigm, the learning process is seen as an infinite
process in which an algorithm receives items of information about a target model.
Each time an item is received the algorithm should propose a hypothesis. In order
to be successful the algorithm should assure that, after receiving a finite number of
items, the hypothesis model is always equivalent to the target.

Unfortunately, this paradigm does not put any restriction on the resources the
inference algorithm can use. Several criteria has been introduced to cover this gap
[2]. In this paper we are going to use the criterion of identification in the limit from
polynomial time and data introduced by de la Higuera [3]. This criterion requires the
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existence of a polynomial size set of items such that, when provided to the algorithm
along with other items, the algorithm should produce a hypothesis equivalent to the
target.

In our case the models are formal languages and the items strings with labels
indicating their belonging or not to the grammar.

The class of the Linear Languages is a subclass of the Context Free Grammars.
This languages are produced by Context Free Grammars such that on the right hand
side of the rules there is at most a nonterminal. Although it seems a quite simple
class, it has been shown that even the question of saying if two linear languages are
equivalent is undecidable. Then, the identification in the limit from polynomial time
and data is impossible.

An important subclass of the linear languages are the Left Deterministic Lin-
ear Languages (LDLL) [4]. Those languages can be generated by Left Determin-
istic Linear Grammars that shares with the Deterministic Regular Grammar the
property of knowing which is the next rule to use in the parsing of a string just
by observing the leftmost terminal in the unparsed part of the string. {anbn|n ≥
0} and {ambncn|m,n ≥ 0} are some examples of languages in the class, while
{anbncm|m,n ≥ 0} is not. This class includes the Regular Languages.

Unfortunately this class is not closed over the reversibility, that is not every
language formed by the reversals of the strings in an LDLL are in LDLL. The class
formed by the reversals of the languages in LDLL is called the Right Deterministic
Linear Languages (RDLL) and are defined in a symmetrical way in which LDLL are
defined. The regular languages, {anbn|n ≥ 0} and {anbncm|m,n ≥ 0} are examples
of languages in the class.

Recently it was showed ([4]) that the class of the LDLL can be identified in the
limit from polynomial time and data. Obviously, the class of the RDLL can also
be identified just by reversing the strings before to introduce them on the LDLL
inference algorithm.

In this paper we propose a new class of languages, the Left-Right Deterministic
Languages (LRDLL), formed by the union of the LDLL and RDLL. We show that
this class can be identified in the limit from polynomial time and data. The inference
algorithm makes use of two inference algorithms, one for LDLL and other for RDLL.
When a sample is given the main algorithm runs both inference algorithms and
outputs the smaller of the hypothesis produced by the algorithms.

In order to show the identification in the limit from polynomial time and data,
the concept of n-negative characteristic sample is introduced. That is a sample that
forces an inference algorithm to output a hypothesis of size bigger than n when
strings from a non identifiable language are provided.
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The paper is organized as follows:

– Section 2 introduces the main notation used trough the paper, defines the classes
of grammars object of this paper and defines the identification in the limit form
polynomial time and data learning paradigm.

– Section 3 reviews the main properties of the LDLL and describes a learning
algorithm for this class of languages.

– Section 4 describes the learning algorithm for the LRDLL, introduces the concept
of n-negative characteristic set and it is used to show the identifiability in the
limit from polynomial time and data.

– Section 5 concludes and propose new related open problems.

2 Definitions

2.1 Languages and Grammars

An alphabet Σ is a finite nonempty set of symbols. Σ∗ denotes the set of all finite
strings over Σ, Σ+ = Σ∗−{λ} where λ denotes the empty string. A language L over
Σ is a subset of Σ∗. In the following, unless stated otherwise, symbols are indicated
by a, b, c . . . and strings by u, v, . . . . IN is the set of non negative integers. The length
of a string u will be denoted |u|, so |λ| = 0. Let I be a finite set of strings, |I| denotes
the number of strings in the set and ‖I‖ denotes the total sum of the lengths of all
strings in I.

Let u, v ∈ Σ∗, u−1v = w such that v = uw (undefined if u is not a prefix of v)
and uv−1 = w such that u = wv (undefined if v is not a suffix of u). Let L be a
language and u ∈ Σ∗, u−1L = {v : uv ∈ L} and Lu−1 = {v : vu ∈ L}.

Let L be a language, the prefix set is Pr(L) = {x : xy ∈ L}.The symmetrical
difference between two languages L1 and L2 will be denoted L1 � L2. The longest
common suffix (lcs(L)) of L is the longest string u such that (Lu−1)u = L.

Let uR denote the reversal of the string u, the reversal of a string can be computed
recursively as (λ)R = λ and (ua)R = auR. Let X be a set of strings XR = {xR : x ∈
X}.

Definition 1 (Context-free grammars). A context-free grammar (CFG) G is
a quadruple (Σ,V, P, S) where Σ is a finite alphabet (of terminal symbols), V is a
finite alphabet (of variables or non-terminals), P ⊂ V × (Σ ∪ V )∗ is a finite set
of production rules, and S(∈ V ) is the axiom. We will denote uTv → uwv when
(T,w) ∈ P .
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If there exists u0, . . . , uk such that u0 → · · · → uk we will write u0
k
→ uk.

We denote by LG(T ) the language {w ∈ Σ∗ : T →* w} and by L(G) the language
{w ∈ Σ∗ : S →* w}. were →* denotes the transitive, reflexive clousure of →. Two
grammars are equivalent if they generate the same language.

Let G = (Σ,V, P, S) a CFG, the CFG GR = (Σ,V, P ′, S) is the reversal of G iff
(A,α) ∈ P ⇐⇒ (A,αR) ∈ P ′. Obviously, x ∈ L(G) ⇐⇒ xR ∈ L(GR).

Definition 2 (Linear grammars). A context-free grammar G = (Σ,V, P, S) is
linear if P ⊂ V × (Σ∗V Σ∗ ∪ Σ∗)

We will be needing to speak of the size of a grammar. Without entering into
a lengthy discussion, the size has to be a quantity polynomially linked with the
number of bits needed to encode a grammar [2]. We will consider here the size of G

denoted by ‖G‖ =
∑

(T,u)∈P (|u| + 1).

2.2 Deterministic Linear Grammars

In [4] was introduced the class of the Left Deterministic Linear Grammars and Right
Deterministic Linear Grammars as follows:

Definition 3 (Left Deterministic Linear Grammars). A Left Deterministic
Linear Grammar (LDLG) G = (Σ,V, P, S) is a linear grammar where P ⊂ (V ×
ΣV Σ∗) ∪ (V × {λ}) and

∀A ∈ V

∀a ∈ Σ

∀α, β ∈ V Σ∗

(A, aα) ∈ P

(A, aβ) ∈ P

}
⇒ α = β

Definition 4 (Right Deterministic Linear Grammars). A Right Determin-
istic Linear Grammar (RDLG) G = (Σ,V, P, S) is a linear grammar where P ⊂
(V × Σ∗V Σ) ∪ (V × {λ}) and

∀A ∈ V

∀a ∈ Σ

∀α, β ∈ Σ∗V

(A,αa) ∈ P

(A,βa) ∈ P

}
⇒ α = β

The languages generated by LDLG and RDLG are called Left Deterministic
Linear Languages (LDLL) and Right Deterministic Linear Languages (RDLL) re-
spectively.

Note that, RDLG = (LDLG)R and then RDLL = (LDLL)R. The Deterministic
Regular Grammars are a special case of the LDLG (RDLL) where the string that
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appear on the rightmost (leftmost) part of the rules is λ. Then the LDLL and the
RDLL include the regular languages. Both classes of languages include languages
such as {anbn|n ≥ 0} however, {ambncn|m,n ≥ 0} ∈ LDLL but �∈ RDLL and,
obviously, its reverse {cnbnam|m,n ≥ 0} ∈ RDLL but �∈ LDLL.

Finally, we are interested in deterministic linear grammars which can be LDLG
or RDLG:

Definition 5 (Left-Right Deterministic Linear Grammars). A CFG G is
Left-Right Deterministic Linear Grammar (LRDLG) iff G ∈ LDLG ∪ RDLG.

The languages generated by LRDLG are called Left-Right Deterministic Linear
Languages (LRDLL).

This class is closed over the reversal operation.

2.3 Learning and Identifying

In this paper we are concerned with the identification in the limit from polynomial
time and data using positive and negative information. In this setting the learner is
asked to learn from a learning sample, i.e. a finite set of strings, each string labelled
by ‘+’ if the string is a positive instance of the language (an element of L), or by
‘−’ if it is a negative instance of the language (an element of Σ∗ −L). Alternatively
we denote I = (I+, I−) where I+ is the sub-sample of positive instances and I− the
sub-sample of negative ones.

Definition 6 (Identification in the limit from polynomial time and data).
A class L of languages is identifiable in the limit from polynomial time and data
in terms of a grammar class G iff there exist two polynomials p() and q() and an
inference algorithm φ(·) such that:

1. Given any sample (I+, I−), φ(I) returns a grammar G ∈ G such that I+ ⊆ L(G)
and I− ∩ L(G) = ∅ in O(p(‖I‖)) time;

2. ∀L ∈ L and ∀G ∈ G : L(G) = L, there exists a sample C = (C+, C−)(called
characteristic) such that ‖C‖ < q(‖G‖) for which, if C+ ⊆ I+, C− ⊆ I−, φ(I)
returns a grammar G′ such that L(G′) = L.

To simplify, we are going to say that a class of grammars G is identifiable in the
limit from polynomial time and data if the class of languages L = L(G) is identifiable
in the limit from polynomial time and data in terms of G.

With this definition it is known that deterministic finite automata [5] and even
linear grammars [6] are identifiable in the limit from polynomial time and data
whereas non-deterministic finite automata and linear (and hence context-free) gram-
mars are not [3].
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3 Left Deterministic Linear Languages

As was pointed in section 2.2, the definition of LDLL is somewhat similar to the
definition of Deterministic Regular Grammars. This similarity is going to allow us
to define a normal form and a canonical automaton for such type of languages.

3.1 Canonical form

Let us first define the common suffix free languages that are going to play the role
of the set of tails in a regular language.

LDLL use common suffix properties; in the sequel we are going to denote the
longest common suffix reduction of a language L by L ↓ = L(lcs(L))−1.

Definition 7 (Common suffix-free language equivalence). Given a language
L we define recursively the common suffix-free languages CSFL(·), and the associated
equivalence relation as follows:

CSFL(λ) = L

CSFL(xa) = (a−1 CSFL(x)) ↓

∣∣∣∣ x ≡L y ⇐⇒ CSFL(x) = CSFL(y)

It was shown in [4] that, a L ∈ LDLL iff {CSFL(x) : x ∈ Σ∗} is finite.

A consequence of this is the following corolary:

Corollary 1. Let L �∈ LDLL then |{CSFL(x) : x ∈ Σ∗}| = ∞

Now, following the parallelism with the Deterministic Regular Grammars, the
canonical grammar for a LDLL can be defined as follows:

Definition 8 (canonical grammar for LDLL). Given any linear deterministic
language L, the associated canonical grammar is GL = (Σ,V, P, SCSFL(λ)) where:

V ={SCSFL(x) : CSFL(x) �= ∅}

P ={SCSFL(x) → aSCSFL(xa) lcs(a−1 CSFL(x)) : CSFL(xa) �= ∅}

∪ {SCSFL(x) → λ : λ ∈ CSFL(x)}

We are going to define now a cannonical form to write this grammar:

Definition 9 (Advanced form for LDLL). A linear grammar G = (Σ,V, P, S)
is deterministic in advanced form if:

1. all rules are in the form (T, aT ′w) or (T, λ);
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2. ∀(T, aT ′w) ∈ P,w = lcs(a−1LG(T ));

3. all non-terminal symbols are accessible: ∀T ∈ V ∃u, v ∈ Σ∗ : S →* uTv and useful:
∀T ∈ V, LG(T ) �= ∅;

4. ∀T, T ′ ∈ V, LG(T ) = LG(T ′) ⇒ T = T ′.

Now it was proved in [4] that:

Theorem 1. Let L ∈ LDLL, then GL is the smallest LDLL advanced grammar such
that L(GL) = L. Moreover, it is unique up to isomorphisms.

3.2 Learning LDLL

As LDLL admit a small canonical form it is sufficient to have an algorithm that can
learn this type of canonical form at least when a characteristic set is provided. In
doing so we are following the type of proof used to prove learnability of dfa [7, 5].

The idea of the algorithm is to provide a systematic way to build the canonical
grammar provided we can make some type of queries to an unlimited oracle. In a
second step, the queries to the oracle are changed by functions that extract equivalent
information from the learning set.

Let first introduce the concept of short prefix :

Definition 10. Let L be a LDLL, and � a length lexicographic order relation over
Σ∗, the shortest prefix set of L is defined as SpL = {x ∈ Pr(L) : CSFL(x) �= ∅∧y ≡L

x ⇒ x � y}

Note that, in a canonical grammar, we have a one to one relation between strings
in Sp and non terminals of the grammar. We shall thus use the strings in Sp as
identifiers for the non terminal symbols.

Imagine we have an unlimited oracle that knows language L and to which we
can address the following queries:

next(x) = {xa : ∃xay ∈ L ∧ CSFL(xa) �= ∅} equiv(x, y) ⇐⇒ x ≡L y

right(xa) = lcs(a−1 CSFL(x)) isfinal(x) ⇐⇒ λ ∈ CSFL(x)

An algorithm (alg. 1) can be built to construct the canonical grammar. Algorithm
1 visits the prefixes of the language L in length lexicographic order, and constructs
the canonical grammar responding to definition 8. If a prefix xa is visited and no
previous equivalent non terminal has been found (and placed in Sp), this prefix
is added to Sp as a new non terminal and the corresponding rule is added to the
grammar. If there exists an equivalent non terminal y in Sp then the corresponding
rule is added but the strings for which x is a prefix will not be visited (they will not
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be added to W ). When the algorithm finishes, Sp contains all the short prefixes of
the language.

In order to simplify notations we introduce:

Definition 11.

∀x : CSFL(x) �= ∅, tailL(x) =

{
lcs(x−1L) if x �= λ

λ if x = λ

Lemma 1. Let GL = (Σ,V, P, S) be the canonical grammar of a LDLL L, ∀x :
CSF (x) �= ∅,

1. lcs(a−1 CSFL(x)) = (tailL(xa))(tailL(x))−1

2. xv tailL(x) ∈ L ⇐⇒ v ∈ LGL
([x]).

In order to use algorithm 1 with a sample I = (I+, I−) instead of an oracle with
access to the whole language L the 4 functions next, right, equiv and isfinal have to
be implemented as functions of I = (I+, I−) rather than of L:

next(x) = {xa : ∃xay ∈ I+}

right(xa) = tailI+(xa) tailI+(x)−1

equiv(x, y) ⇐⇒ xv tailI+(x) ∈ I+ ⇒ yv tailI+(y) �∈ I−

∧ yv tailI+(y) ∈ I+ ⇒ xv tailI+(x) �∈ I−

isfinal(x) ⇐⇒ x tailI+(x) ∈ I+

Algorithm 1 Computing G using functions next, right, equiv and isfinal
Require: functions next, right, equiv and isfinal, language L

Ensure: L(G) = L with G = (Σ, V, P, Sλ)
Sp = {λ}; V = {Sλ}
W = next(λ)
while W �= ∅ do

xa = min≤ W

W = W − {xa}
if ∃y ∈ Sp : equiv(xa, y) then

add Sx → aSy right(xa) to P

else

Sp = Sp∪{xa}; V = V ∪ {Sxa}
W = W ∪ next(xa)
add Sx → aSxa right(xa) to P

end if

end while

for all x ∈ Sp : isfinal(x) do

add Sx → λ to P

end for
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It is easy to see that, if a set fulfils the following conditions, then the algorithm
will be force to output the canonical grammar (see [4] for detail).

Definition 12 (characteristic sample). Let I = (I+, I−) be a sample of the
LDLL L. I is a characteristic sample (CS) of L if:

1. ∀x ∈ SpL ∀a ∈ Σ : xa ∈ Pr(L) ⇒ ∃xaw ∈ I+

2. ∀x ∈ SpL ∀a ∈ Σ : CSFL(xa) �= ∅ ⇒ tailI+(xa) = tailL(xa)

3. ∀x, y ∈ SpL ∀a ∈ Σ : CSFL(xa) �= ∅ ∧ xa �≡L y ⇒
∃v : xav tailL(xa) ∈ I+ ∧ yv tailL(y) ∈ I− ∨
∃v : yv tailL(y) ∈ I+ ∧ xav tailL(xa) ∈ I−

4. ∀x ∈ SpL : x tailL(x) ∈ L ⇒ x tailL(x) ∈ I+

Condition 1 assures that all the non terminals will be represented on the output
grammar. Condition 2 assures that the right hand part of the rules will be well
constructed. Condition 3 assures that every non equivalent non terminals tested on
the algorithm will be detected as non equivalent. And condition 4 assures that all
the rules with shape A → λ will be included in the grammar.

In [4] was proved that a polynomial set that fulfils all the conditions can be build.

As a corollary of that we have:

Corollary 2. The LDLG can be identified in the limit from polynomial time and
data using positive and negative sample.

4 Learning LRDLG

On the previous section we have defined an algorithm LDLGA(·) that identifies the
LDLG. Reminding that RDLL = LDLLR, then it is easy to build an algorithm
RDLGA(·) for RDLG such that RDLGA(I) = (LDLGA(IR))R.

Now, for the LRDLG let us define an algorithm (LRDLGA) (see alg. 2) that given
a sample, uses it with LDLGA and RDLGA, and returns the hypothesis grammar
with a lower number of non terminals.

If the target language is in LDLL−RDLL and the sample is enough big, LDLGA
will provide the canonical LDLG for the language, but the RDLGA, by corollary 1,
is going to produce bigger and bigger grammars as the sample grows. Then it has
to exist a point when the correct hypothesis will be outputted.

The case when the language is in RDLL−LDLL is similar. And the case when the
target is in both classes, LRDLGA will output the smaller of both representations.
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Now, in order to show the identification in the limit from polynomial time and
data, we have to show the existence of a polynomial characteristic set. The idea is to
find a sample such that, if the language is not in the class it will force the algorithm
to output a hypothesis with size bigger that a given parameter. Let us formalize this
idea:

Definition 13 (n-negative characteristic sample). Let φ(·) an inference algo-
rithm that identifies in the limit the class of languages L in terms of the class of
grammars G, let L �∈ L, C = (C+, C−) is a n-negative characteristic sample (n-NCS)
for φ if for all sample I = (I+, I−) of L : C+ ⊆ I+, C− ⊆ I−, then ‖φ(I)‖ ≥ n.

In our case, we are going to use the number of non terminals as the size of
a grammar. Then, if we can show that for every language in LDLL − RDLL (or
RDLL−LDLL) with n non terminals we can find a polynomial size (n+1)-NCS for
RDLGA (LDLGA), the union of the characteristic sample for LDLGA (RDLGA) of
the language with the (n + 1)-NCS will be a polynomial size characteristic sample
for the LRDLGA.

Let us show that this polynomial size n-NCS exists.

Proposition 1. Let L �∈ LDLL and let n ∈ IN. As L �∈ LDLL we know that |SpL | is
infinite, let SpLn

be the set of n smallest elements x ∈ SpL in the lenght lexicographic
order. Let I = (I+, I−) be a sample of L, I is an n-negative characteristic sample
(n-NCS) for LRDLGA if:

1. ∀x ∈ SpLn
∀a ∈ Σ : xa ∈ Pr(L) ⇒ ∃xaw ∈ I+

2. ∀x ∈ SpLn
∀a ∈ Σ : CSFL(xa) �= ∅ ⇒ tailI+(xa) = tailL(xa)

3. ∀x, y ∈ SpLn
∀a ∈ Σ : CSFL(xa) �= ∅ ∧ xa �≡L y ⇒

∃v : xav tailL(xa) ∈ I+ ∧ yv tailL(y) ∈ I− ∨
∃v : yv tailL(y) ∈ I+ ∧ xav tailL(xa) ∈ I−

4. ∀x ∈ SpLn
: x tailL(x) ∈ L ⇒ x tailL(x) ∈ I+

Algorithm 2 Computing the grammar G for a language L ∈ LRDLL
Require: Algorithm 1, language L

Ensure: L(G) = L with G = (Σ, V, P, Sλ) and |V | smaller.
Let GL = (Σ, VL, PL, Sλ,L) the grammar computed by algorithm 1 with L as input.
Let GR = (Σ, VR, PR, Sλ,R) the reversed grammar computed by algorithm 1 with LR as input.
if |VL| ≤ |VR| then

G = GL

else

G = GR

end if
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Proof. As L �∈ LDLL we know that {CSFL(x)} is infinite and then, if we try to build
a canonical grammar, we are going to obtain an infinite number of non terminals.
Observe that the inference algorithm constructs the grammar iteratively from the
non terminal nearest to the start symbol to the farthest. The conditions of the n-
NCS provide enough information to the inference algorithm to construct correctly
the productions related to the first n non terminal of the infinite grammar.

It is easy to see that condition 1 assures that all the first n non terminals will
be represented on the output grammar. Condition 2 assures that the right part of
the rules related with the first n non terminals will be well constructed. Condition
3 assures that every non equivalent non terminals (of the first n) tested on the
algorithm will be detected as non equivalent. And condition 4 assures that all the
rules with shape A → λ, for the first n non terminals will be included in the grammar.

��

Now we have to show that there is a polynomial sample that fulfils the previous
conditions. In order to show this, the following lemma proved in [4] is needed.

Lemma 2. Let GL = (Σ,V, P, S) be the canonical grammar of a LDLL L, and let
x, y be such that CSFL(x) �= CSFL(y), then ∃z ∈ LGL

([x]) � LGL
([y]) such that

|z| ≤ ||GL||
2.

Theorem 2. For any L �∈ LDLL there is an n-negative characteristic sample of
polynomial size.

Proof. Obviously, the number of strings involved in the conditions is polynomial,
then we have to show that their lengths are also polynomial.

Note that each time a production rule of a LDLG is applied in the parsing of a
string, a non terminal is removed from the prefix of a string, then ∀x ∈ SpLn

: |x| ≤ n.
Those strings needs to reach the non terminal represented by the short prefix x use
the rule whose right hand part beginning with terminal a and then a string to reach
a final non terminal (a terminal A such that A → λ ∈ P ). So, the length of the
strings xaw in condition 1 of proposition 1 are bounded by (2n + 1)(|wl|+ 1), where
wl is the longest suffix in the right hand side of the production rules of G.

In a similar way, we can see that the length of strings related with condition 2
and 4 can also be bounded by (2n + 1)(|wl| + 1).

Finally, lemma 2 shows that the length of the strings necessary for third condition
can be quadratically bounded. ��
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Example 1. Consider the language L = {anbncm : n ≥ 0,m ≥ 0}. This language is
in RDLL but is not in LDLL. The right canonical grammar GR for it is:

S −→ Sc

S −→ aAb

S −→ λ

A −→ aAb

A −→ λ

We are going to show that the left canonical grammar has an infinite number of non
terminals.

The characteristic sample (I+, I−) with I+ = {λ, c, ab, abc, aabb, abcc} and I− =
{acb, aaccbb} let us identify1 GR with SpR = {λ, a}, (Sλ ≡ S, Sa ≡ A). On the other
hand, we can compute CSFL(x) for every x ∈ Pr(L):

x CSF (x)

λ anbncm

a anbn+1cm

c anbncm

aa anbn+2cm

ab cm

aaa anbn+3cm

aab bcm

abc cm

· · · · · ·

One can see that in this case SpL remains unbounded and, in order to identify
correctly the grammar as RDLG with algorithm LRDLGA, is sufficient supply a
3-NCS. If we add the string aabbc to I+ and the strings b and bb to I−, the sample
provided above becomes 3-NCS for languages in LDLL, giving the left grammar:

Sλ −→ aSa

Sλ −→ cSλ

Sλ −→ λ

Sa −→ aSaa

Sa −→ bSλ

Saa −→ bSa

1 Recall that the input to algorithm 1 must be the reversal of the sample, and the obtained grammar
must be also reversed.
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5 Summary and Future Work

Left Deterministic Linear Languages (LDLL) and Right Deterministic Linear Lan-
guages (RDLL) are subclasses of Linear Languages that, in turn, includes the Reg-
ular Languages. We define the Left-Right Deterministic Languages (LRDLL) as the
union of the LDLL and RDLL.

In this paper we have proved that the class of the LRDLL is identifiable in the
limit from polynomial time and data. This class of languages is the largest one for
which this type of results has been obtained so far. To do so we have introduced
the notion of n-negative characteristic sample as a sample that forces an inference
algorithm to produce a hypothesis of size n when strings from a non identifiable
grammar are provided.

Note that in the parsing of a string by a LDLG if we have reached a non terminal,
the next rule to apply can be determined by looking the leftmost terminal of the non
parsed string. In RDLG the nonterminal to look is the rightmost. Let we call the
non terminals in LDLG left deterministic while the non terminals in RDLG right
deterministic.

Now, a new class of linear languages can be defined as a grammars such that
each non terminal is left deterministic or right deterministic, but not both at the
same time. It is easy to see that, on such grammars, the parsing can be done in
a deterministic way provided we know if the reached non terminal is left or right
deterministic. This class includes properly the LRDLL.

Can the n-negative characteristic sample technique be expanded in order to
elucidate if a non terminal is left or right deterministic? Can this class of grammars
be identified from polynomial time and data?
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[6] J.M. Sempere and P. Garćıa. A characterisation of even linear languages and its
application to the learning problem. In Grammatical Inference and Applications,
ICGI’94, number 862 in Lecture Notes in Artificial Intelligence, pages 38–44.
Springer Verlag, 1994.

[7] E.M. Gold. Complexity of automaton identification from given data. Information
and Control, 37:302–320, 1978.

326 Pattern Recognition : Progress, Directions and Applications



Band selection using mutual information matrix for
hyperspectral data

J.M. Sotoca, F. Pla
Dept. Llenguatges i Sistemes Informàtics, Universitat Jaume I
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Abstract

In this paper, a band selection technique for hyperspectral image data is proposed.
A mutual information matrix between pairs of bands is built to collect the relations
of information between the different regions of the spectrum. A process based on a
Deterministic Annealing optimization is applied on the mutual information matrix to
obtain a probabilistic model and look for the image bands less uncorrelated as possible
between them. Two supervised filter feature selection methods were also tested to
analyze the accuracy obtained by the presented approach. The proposed methodology
can develop for supervised selection, building the matrix in terms of class separability
for labelled training sets.

1 Introduction

Hyperspectral sensors acquire information in large quantities of spectral bands, which gen-
erate hyperspectral data in high dimensional spaces. These systems use spectral information
to perform certain tasks in remote sensing, medical imaging, product quality assessment,
and so on. These systems use multispectral image representations in order to estimate
and analyze the presence of vegetation pathologies, substances or chemical compounds,
pathologies, etc, providing a qualitative and quantitative evaluation of those features.

A multispectral image can be considered as defined in a 3D space I(x, y, λ), where
(x, y) denotes the spatial co-ordinates of the pixel location in the image, and λ denotes a
spectral band (wavelength). Each spectral band records a specific portion of the electromag-
netic spectrum so that each spectral band provides greater insight about the composition of
the different regions of the image. Therefore, each image band is captured at the selected
wavelength with a narrow band-pass filter, allowing a multi-band representation.

When having available hyperspectral data, a common question to be solved is how to
select the right spectral bands to characterize the problem. The main objective of band
selection in multispectral imaging is to avoid redundant information and reduce the amount
of data to be processed. Therefore, from the point of view of remote sensing, we would
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be interested in feature selection [8] rather than in feature extraction [10, 11]. For instance,
obtaining a new set of reduced image representations from a linear combination of the
whole set of original image bands is not desirable, since we would need the total amount
of information to obtain the new features. On the other hand, selecting a subset of relevant
bands from the original set, allows the process of image acquisition to be reduced to a
certain number of bands instead of dealing with the whole amount of data, making simpler
the image acquisition and analysis.

In the framework of multispectral imaging, another possible answer to the problem of
feature selection would be using an unsupervised approach. One way to solve it consists of
grouping the data in the feature space by using clustering techniques [2]. Another approach
is to minimize the classification error by selecting bands that provide the highest image
contrast [5]. In this work, a Deterministic Annealing (DA) approach is used to analyze
the amount of information contained in the mutual information matrix, which represents
the relations of information for pairs of spectral bands. The proposed algorithm uses a
Deterministic Annealing (DA) approach to look for groups of bands as less correlated as
possible, representing correlation between image bands by means of mutual information.
Selected bands are further used in pixel classification tasks to assess the performance of
proposed technique.

2 Transinformation matrix

Let us consider a pair of random variables Ai and Aj , representing the image bands i and j.
The amount of information contained in both images can be expressed as the joint entropy
H(Ai, Aj), that is,

H(Ai, Aj) =
∑

p(ai, aj) log2

1
p(ai, aj)

(1)

where p(ai, aj) represents a joint probability distribution. The term log2
1

p(ai,aj)
means

that the amount of information gained from a event with probability p(ai, aj) is inversely
related to the probability that this event take place. The rarer is an event, the more meaning
is assigned to occurrence of the event. Thus, the information per event is weighted by the
probability of occurrence. The resulting entropy term is the average amount of information
gained from a set of possible events.

For two images i and j, the co-joint probability distribution p(ai, aj) of both images
can be estimated as,

p(ai, aj) =
h(ai, aj)

MN
(2)

where h(ai, aj) is the joint gray level histogram of both images, and the normalizing factor,
MN (M columns and N rows) is the image size, assuming all images bands with equal size.
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(a)

Figure 1: The Mutual Information matrix for a multispectral image with 128 wavebands.
Darker values represent less correlation.

Mutual information H(Ai:Aj) is a basic concept in information theory [1]. It measures
the interdependence between random variables. In the case of two images, the mutual
information is defined as:

H(Ai : Aj) = H(Ai) + H(Aj) − H(Ai, Aj) (3)

where H(Ai), H(Aj) are the entropy of images i and j. The function H(Ai:Aj) measures
the amount of information shared between Ai and Aj . The entropies of both images satisfy
the following inequality:

0 ≤ H(Ai : Aj) ≤ min{H(Ai), H(Aj)} (4)

One way to establish the interdependence between a set of features is defining the
transinformation matrix (see Fig 1). This is a square matrix representing the mutual infor-
mation between pairs of image bands. The diagonal terms represent the entropy of single
band.

3 A new technique for rank reduction

We look for a strategy based on an unsupervised approach because, in supervised methods,
it is necessary to fix beforehand the number of classes or regions present in the image, and to
label the adequate number of training instances. Moreover, the computational cost of filter
methods in supervised feature selection is considerable and, in many problems, labelling
data can become a complex and difficult task.
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Consider as input space the transinformation matrix with range D (number of spectral
bands), representing the dependence among image bands. Contiguous bands in the spectrum
tend to be highly correlated (brighter values in Fig 1). Looking at the transinformation
matrix, we could interpret the problem of band selection as a rank reduction process of that
matrix.

One possibility could be, for instance, to apply Truncate Singular Decomposition Value
(TSVD) over the transinformation matrix or other factorization methods, eliminating the
smaller singular values and their corresponding singular vectors. This idea has been used
for noise reduction in signal processing [4].

The technique here proposed is aimed at reducing the rank of the transinformation ma-
trix by selecting a given number of features that minimize the correlation among them.
Therefore, we look for a global minimum without carrying out a search of subsets of fea-
tures in the feature space. The process must be capable of picking up a few subset of bands
in the mains regions that appear in the transinformation matrix, and obtaining as better
performance as possible from the classification point of view reducing the feature space.

Given a certain function of information Iij between pairs of bands represented in the
matrix, we are interested in associating a probability of significance p(Iij |ij) for each po-
sition i and j in the matrix. This probability will mean how relevant is the interaction of
band i and j for the problem. In the case of the transinformation matrix, each entry Iij can
represent the mutual information between bands.

On the other hand, discretizing Iij values and representing them as gray levels (see
Fig 1), allows to define a spreading measure of the information in the gray level distribution
of the transinformation matrix. This measure will estimate the information contained about
the appearance of the different regions of the spectrum in the matrix. Thus, we can consider
the matrix as an “image” and analyze the probability that the event (value associate with
each position of the matrix) take place. That is, the probability distribution associated to
each position of the matrix nij can be calculated as nij = hij/D2, where hij is the value in
the histogram for the gray level at i and j.

Therefore, a probabilistic model is applied over each position of the matrix p(Iij |ij).
It is, thus, possible to utilize DA to obtain the image bands that contain higher values of
significance in the matrix. To apply DA in such a framework, the following requirements
must be fullfiled:

• The entropy S of the distribution of probabilities p(Iij |ij) associated to this repre-
sentation of ”level of uncertainly” must be maximum.

• The sum of probabilities are normalized to one.

• The product of p(Iij |ij) per the value of Iij between pairs of bands, provides a value
about the amount of information I associated to the ensemble.
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Therefore, we can establish the the following relation:

S = −
D∑

i=1

D∑
j=1

p(Iij |ij) log
p(Iij |ij)

pij

(5)

subject to
D∑

i=1

D∑
j=1

p(Iij |ij) = 1 and
D∑

i=1

D∑
j=1

p(Iij |ij)Iij = I (6)

where pij is proportional to the prior contribution of each relation between pairs of bands.
Thus, S is the entropy relative to some “measures” pij that has to be maximized [6]. To
maximize S subject to the constraint Eq 6, we can introduce Lagrangian multipliers α and
β,

S + α
D∑

i=1

D∑
j=1

p(Iij |ij) + β
D∑

i=1

D∑
j=1

p(Iij |ij)Iij (7)

Setting the partial derivative of Eq 7 with respect p(Iij |ij) to zero, we obtain the fol-
lowing expression,

− log p(Iij |ij) − 1 + log pij + α + βIij = 0 (8)

where
p(Iij |ij) = pije

α−1+βIij (9)

Taking into account that the sum of probabilities are normalized to one, then

D∑
i=1

D∑
j=1

pije
βIij = e1−α = Z (10)

where Z is the so-called the partition function and

p(Iij |ij) =
pije

βIij

Z
(11)

On the other hand, we have to fix the Lagrangian multiplier β such as I and S are
related. This optimization can be conveniently reformulated as the minimization of the
following Lagrangian F with a parameter T :

F = I − TS (12)

Therefore, the corresponding minimum of F is obtained by putting the Eq 11 into Eq 12

F ∗ = min(F ) = −T log

⎛
⎝ D∑

i=1

D∑
j=1

pije
βIij

⎞
⎠ (13)
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Multiplying p(Iij |ij) in Eq 8 and adding for all values, we obtain

−
D∑

i=1

D∑
j=1

p(Iij |ij) log
p(Iij |ij)

pij

− (1 − α)
D∑

i=1

D∑
j=1

p(Iij |ij) + β
D∑

i=1

D∑
j=1

p(Iij |ij)Iij = 0

(14)
then

S + βI = 1 − α = lnZ (15)

and from the Eq 12

S −
I

T
= −

F

T
(16)

Thus, we can consider β = −1/T and lnZ = −F/T . Finally, our probability function
is expressed as

p(Iij |ij) =
pije

−Iij/T∑D
i=1

∑D
j=1 pije−Iij/T

and

pij = Iijp(Iij |ij)

The result is the Bayes’ Theorem, where we can obtain the posterior probability dis-
tribution for each position through the exponential function of the values observed in the
matrix per the prior probability pij .

In our experiments, we have observed that using Iij = H(Ai:Aj), the approach finds a
global minimum in regions of the spectrum of image bands with smaller values of mutual
information with respect to the rest of regions of the spectrum represented in the transin-
formation matrix. Nevertheless, to obtain a good performance of the classifier in the subset
of features selected, it is necessary to choose image bands of the different regions more
representative of the ensemble. This question can be solved introducing the probability to
appear this event in the matrix nij in the function of information as:

Iij = nijH(Ai : Aj). (17)

The initialization of DA starts with large enough values of T , and a uniform distribution
of probabilities p(Iij |ij) = 1/D2. The initial set of features X to choose is empty. It is clear
from Eq 12 that the goal at each temperature is to maximize the entropy of the partition. As
T → 0 a reduction of the amount of information I is carried out. In practice, the system is
annealed to a low temperature, such the amount of information I (“level of dependence” of
the matrix) is sufficiently small.
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(a) (b) (c)

Figure 2: (a) Example of RGB composition for an orange image in the Visible spectrum.
(b) HyMap RGB composition, Barrax, Spain. (c) RGB composition of AVIRIS (92AV3C:
NW Indiana’s Indian Pine test site).

On the other hand, we express the probability contributions of each band Ai accumulat-
ing for each row or column i (the matrix is symmetrical) as:

Bi =
D∑

j=1

p(Iij |ij) (18)

While T decreases, the difference between the values of p(Iij |ij) grow up. As T goes
down, the probability contributions of some bands Bi → 0, but it is possible that further in
the annealing with lower T , previous low values of Bi grow up for the new circumstances.
Only if Bi

∼= 0, we can almost assure that the corresponding band will not contribute in the
probability distribution in the next iterations.

Summarizing, a brief sketch of the algorithm is as follows:

1. Initialize: T = T0, p(Iij |ij) = 1/D2 and |X| = 0

2. Minimize: F = I − TS

3. Calculate: Bi =
∑D

j=1 p(Iij |ij)

4. If Bi
∼= 0 then: X ← (X ∪ Ai)

5. Count the number of image bands R such: Bi > 1/D

6. Lower Temperature: T ← q(T )

7. Go to step 2 while R ≥ 2

In our experiments, we used and exponential schedule to reduce T , q(T ) = αT , where
α < 1, but other annealing schedules are possible. At the end of the algorithm, the proba-
bility contributions Bi are concentrated in the two best bands with values about � 0.5.
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4 Experiments and results

In the experiments, we have used four sources of hyperspectral or multispectral data. The
two first collections of multispectral images were obtained by an imaging spectrograph
(Retiga-Ex, Opto-knowledge System Inc. Canada). The first one has a spectral range from
400 to 720 nanometers in the visible (VIS) obtaining a set of 33 spectral bands for each
image. The second one has a spectral range from 650 to 1050 nanometers in the near
infrared (NIR) obtaining a set of 41 spectral bands for each image. In both cases, the
camera has a spectral resolution of 10 nanometers.

The image database consisted of forty multispectral images for the VIS and NIR, re-
spectively, corresponding to orange fruits with different types of defects and skin variations
on their surfaces (see Fig 2 (a)). In order to compare the performance of the approach here
presented, different region of the oranges, including the background, were labelled in eight
classes, obtaining 1463346 pixels from VIS and 1491888 pixels from NIR.

The third source of data corresponds to a spectral image (700 X 670 pixels) acquired
with the 128-bands HyMap spectrometer during the DAISEX-99 campaign with six differ-
ent classes were considered in the area (see Fig 2(b)) (http:/io.uv.es/projects/daisex/).

The fourth source of data corresponds to a spectral image (145 X 145 pixels) acquired
with the AVIRIS data set with 220 bands collected in June 1992 over the Indian Pine Test
site in Northwestern Indiana (see Fig 2 (c)). The data set is designated as 92AV3C, and it
has seventeen classes.(http:/dynamo.ecn.purdue.edu /∼biehl/MultiSpec)

In order to assess the performance of the method, a Nearest Neighbor (NN) classifier
was used to classify pixels into the different classes. The performance of the NN classi-
fier was considered as the validation criterion to compare the significance of the subsets of
selected image bands obtained by the proposed approach and two supervised methods con-
sidered in the experiment carried out. To increase the statistical significance of the results,
the average values over five random partitions were estimated.

4.1 Supervised criteria proposed

To analyze the accuracy of the ranking of bands obtained by the proposed approach, two su-
pervised filter feature selection methods were also tested. Thus, the band selection process
was considered as a supervised feature selection approach, in this case using the labelled
data set for the feature selection process.

The main motivation about comparing the proposed method with supervised approaches
is that the labelled data contains information about the distribution of classes exiting in the
hyperspectral data, and they allow the search for relevant feature subsets. Comparing the
performance with those approaches, we can measure the capability to obtain subsets of
relevant features (image bands) by the introduced DA approach without a prior knowledge
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of the class distributions in the multispectral image.

The first method is the well-known ReliefF algorithm [9] based on pattern distances.
This algorithm initializes every feature weight to zero and then iterates m times looking for
a set of feature weights that optimizes a criterion function.

The procedure begins by randomly selecting a sample x from the data set. For the
selected sample, it determines the nearest neighbor prototype of the same class phit (nearest
hit) and the nearest neighbor prototype of the different class pmiss (nearest miss). The
algorithm updates each feature weight fi according to the following criterion:

fm
i = fm−1

i −
diff(xi, p

hit
i )

m
+

∑
c �=class(x)

p(c)diff(xi, p
miss
i )

m
(19)

where p(c) is the prior probability of class c, and diff(, ) is the distance between the sample
and the prototype for the feature i. This algorithm was chosen because of its widespread use
and good performance in general feature selection problems. As a result, the higher weight,
the more relevant is a feature.

The second technique is related to divergence measures between classes. One of the
best-known distance measures utilized for feature selection in multi-class problems is the
average Jeffries-Matusita (JM) distance [8]:

JM =
c∑

h=1

c∑
k>h

PhPkJMhk (20)

where

JMhk =
√

2(1 − e−bhk)

and

bhk =
1
8
(mh − mk)t

(
Sh

W + Sk
W

2

)−1

(mh − mk) +
1
2

log

⎛
⎜⎜⎝

∣∣∣∣Sh
W

+Sk
W

2

∣∣∣∣√
|Sh

W ||Sk
W |

⎞
⎟⎟⎠

Pi is the priori probability of the i-th class, bhk is the Bhattacharyya distance between
the classes h and k. Si

W and mi are the covariance matrix and the mean vector of the class
i, respectively.

In terms of class separability, the higher is the JM distance between two classes, the
more separability between them. To obtain suboptimal subsets of features, we have applied
a search strategy based on a Sequential Forward Selection applying this distance ((SFS) JM
distance). This technique starts from an empty feature subset and adding one feature at a
time, reaching a feature subset with the desired cardinality.
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4.2 Experiments including background pixels

During the image labelling process, there is always pixels in an image that are not assigned
to any class of interest, mainly because they are pixels that either do not clearly belong to
some of the predefined classes or they are assigned to a complementary class. The pixels
that have not been assigned to any class are labelled as “background” class. In this subsec-
tion, we include the background information in the databases for its evaluation.

The experimental results shown in this section about the classification rates correspond
to the average classification accuracy obtained by the NN classifier over the five random
partitions described previously. The samples in each partition were randomly assigned to
the training and test set with equal sizes as follows: VIS = 43902 pixels, NIR = 44758
pixels, HyMap = 37520 pixels, 92AV3C = 2102 pixels.

On the other hand, given the huge size of the data sets and the trouble in computational
cost to apply the supervised approaches, particularly in the case of VIS, NIR and HyMap,
the following independent partitions with respect to the data sets were randomly extracted
maintaining the prior probability of the classes: VIS = 87805 pixels, NIR = 89516 pixels,
HyMap = 93804 pixels and 92AV3C = 10512 pixels. Using these databases, the super-
vised approaches and the proposed DA method were applied in order to obtain a ranking of
relevance of the features, that is, of bands.

Fig 3 represents the classification rate with respect to the subset of N bands selected by
each method. Note that the proposed DA method obtained better performance with respect
to the rest of methods in the case of database of VIS, and similar accuracy for the other three
databases (NIR, HyMap and 92AV3C). It is worthwhile mentioning that the DA approach
has a good behavior in all cases when choosing the smaller sets of bands (first one to ten),
where the decision is more critical.

ReliefF performs poorer with respect to the other approaches except with HyMap
image, where the performance of (SFS) JM distance is worse. ReliefF obtains a ranking
of relevance for each single feature and the computational cost grows exponentially with
respect to the number of samples in the data set.

On the other hand, (SFS) JM distance provides a high classification accuracy, but the
computational cost grows exponentially with respect to the number of dimensions. Table 1
shows the computational time in minutes for the tested methods.

In the case of DA, the principal problem arises when we build the transinformation
matrix. Thus, the different co-occurrences of pixels in each pair of image bands are calcu-
lated [7], which represents an important cost in time. On the other hand, when the matrix is
built, the proposed DA method obtain the selected features very quickly.

Therefore, for the band selection problem, where there exists high correlation among
different features (image bands), the principle of looking for non correlated bands from the
different regions of the spectrum, by reducing the mutual information in the ensemble of
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Figure 3: (a) Results over oranges in VIS. (b) Results over oranges in NIR. (c) Results over
spectral image with HyMap spectrometer. (d) Results over 92AV3C spectral image. In all
cases, it is shown the performance of the NN classifier with respect to the number of features
obtained by DA, (SFS) JM distance and ReliefF .

Table 1: Computational cost in minutes (m) when selecting all features except for (SFS)
JM distance, where it is shown for 30 features (VIS and NIR) and 50 features (HyMap and
92AV3C)

Criteria Time (m)
VIS NIR HyMap 92AV3C

ReliefF 198 m 237 m 423 m 20 m
(SFS)JM distance 17 m 49 m 152 m 151 m
DA (build the matrix) 4 m 8 m 130 m 102 m
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Figure 4: (a) Results over spectral image with HyMap spectrometer. (b) Results over
92AV3C spectral image. In all cases, we show the performance of the NN classifier with
respect to the number of features obtained by DA, (SFS) JM distance and ReliefF .

image bands, has proven to be an effective approach to obtain subsets of selected image
bands that also provide satisfactory results from the classification accuracy point of view.

4.3 Experiments without background pixels

The hyperspectral data assigned to the “background class” are usually very scattered and
overlapped with other classes, and this fact damages the classification accuracy. Moreover,
the elimination of this information supposes a supervised knowledge to detect those regions
of the image.

These regions are very difficult to detect with precision from unsupervised information.
Therefore, the goal of this experiment is analyzing the advantages that suppose the knowl-
edge of the class distribution without the noise that the background class can introduce. In
this case, we will focus on HyMap and 92AV3C hyperspectral data, where the background
information is much more undefined.

In the case of HyMap, we added the background class to the training set and validation
set: training = 26190 pixels and validation = 65479 pixels. The test set contains all classes
except the background class. The total number of test samples is 327336 pixels. Thus, the
experiment classifies the test using the ranking of relevance of the features obtained by the
validation set with the proposed method and the supervised methods used in the comparison.

The image 92AV3C only contains 10366 instances without the background class. There-
fore, we apply a holdout partition, where the training and the validation set have the same
size with 5181 pixels and the rest of pixels represent the test set = 5185 pixels.

In Fig 3 (a), the best performance is obtained by Relief over HyMap, although DA
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reaches a good performance, even better in the first two to seven bands, where the decision
is more critical. (SFS) JM distance provides the worst accuracy of the three methods. On
the other hand, Relief needs 13 features to reach 96.94 % , while similar experiments
realized by Camps et. al. [3] using Support Vector Machines (SVM) only needs 2 features
reaching 96.44 %. In this sense, the NN classifier degrades more rapidly than SVM, when
the dimension of the input space is lower.

In the case of the image 92AV3C, the NN classifier achieves the best performance using
the ranking obtained by (SFS) JM distance. In this case, it exits a clear improving for this
method with respect to the other ones. Therefore, the knowledge of the spatial distributions
of the sixteen classes allows a better search to pick up goods subset of features.

5 Conclusions and future research

In this work, correlation among image bands in multispectral images has been established
in terms of mutual information. The relationships between bands can be represented by
the transinformation matrix. Using this representation, an approach to rank reduction of
the transinformation matrix using Deterministic Annealing has been proposed to look for a
given number of bands as less correlated as possible among them.

Although the proposed method has not been established in terms of class separability
for supervised training sets, it has been shown in the experimental results that the image
bands selected by DA provide very satisfactory results with respect to classification accu-
racy when using the selected bands. This effect is more noticeable when choosing small
sets of features, when the decision is more critical. These two advantages, its unsupervised
nature and the ability to choose highly relevant bands in the case of small sets, represent the
more relevant characteristics of the proposed approach.
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Abstract

The Nearest Neighbor classifier constitutes one of the most popular supervised
classification methods. It is very simple, intuitive and accurate in a great variety of
real-world applications. Despite its simplicity and effectiveness, practical use of this
rule has been historically limited due to its high storage requirements and the compu-
tational costs involved, as well as the presence of outliers. In order to overcome these
drawbacks, it is possible to employ a suitable prototype selection scheme, as a way of
storage and computing time reduction and it usually provides some increase in classi-
fication accuracy. Nevertheless, in some practical cases prototype selection may even
produce a degradation of the classifier effectiveness. From an empirical point of view,
it is still difficult to know a priori when this method will provide an appropriate behav-
ior. The present paper tries to predict how appropriate a prototype selection algorithm
will result when applied to a particular problem, by characterizing data with a set of
complexity measures.

1 Introduction

One of the most widely studied non-parametric classification approaches corresponds to the
k-Nearest Neighbor (k-NN) decision rule [3]. Given a set of n previously labeled instances
(training set, TS), the k-NN classifier consists of assigning an input sample to the class
most frequently represented among the k closest instances in the TS, according to a certain
dissimilarity measure. A particular case of this rule is when k = 1, in which an input sample
is assigned to the class indicated by its closest neighbor.

The asymptotic classification error of the k-NN rule (i.e., when n grows to infinity)
tends to the optimal Bayes error rate as k → ∞ and k/n → 0. Moreover, if k = 1, the
error is bounded by approximately twice the Bayes error [3]. The optimal behavior of this
rule in asymptotic classification performance along with a conceptual and implementational
simplicity make it a powerful classification technique capable of dealing with arbitrarily
complex problems, provided that there is a large enough TS available.
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Nevertheless, this theoretical requirement of large TS size is also the main problem
using the 1-NN rule because of the seeming necessity of a lot of memory and computa-
tional resources. This is why numerous investigations have been concerned with finding
new approaches that are efficient with computations. Within this context, many fast algo-
rithms to search for the NN have been proposed. Alternatively, some prototype selection
techniques [1, 4, 6] have been directed to reduce the TS size by selecting only the most rel-
evant instances among all the available ones, or by generating new prototypes in locations
accurately defined.

On the other hand, in many practical situations the theoretical accuracy can hardly be
achieved because of certain inherent weaknesses that significantly reduce the effective ap-
plicability of k-NN classifiers in real-world domains. For example, the performance of
these rules, as with any non-parametric classification approach, is extremely sensitive to
data complexity. In particular, class-overlapping, class-density, and incorrectness or im-
perfections in the TS can affect the behavior of these classifiers. Other prototype selection
methods [5, 10, 13, 14] have been devoted to improve the 1-NN classification performance
by eliminating outliers (i.e., noisy, atypical and mislabeled instances) from the original TS,
and by reducing the possible overlapping between regions from different classes.

Despite the apparent benefits of most prototype selection algorithms, in some domains
these techniques might not achieve the expected results due to certain data characteristics.
For this reason, it seems interesting to know a priori the conditions under which the appli-
cation of a prototype selection scheme can become appropriate. A set of data complexity
measures [7, 8] are used in this paper to predict when a prototype selection technique leads
to an improvement with respect to the plain 1-NN rule.

2 Some problem difficulty measures

The behavior of classifiers is strongly dependent on data complexity. Usual theoretical
analysis consists of searching accuracy bounds, most of them supported by impractical
conditions. Meanwhile, empirical analysis is commonly based on weak comparisons of
classifier accuracies on a small number of unexplored data sets. Such studies usually ignore
the particular geometrical descriptions of class distributions to explain classification results.
Various recent papers [7,8] have introduced the use of measures to characterize the problem
difficulty (or data complexity) and to relate such descriptions to classifier performance.

In [7, 8], authors define some problem difficulty measures for two classes. For our pur-
poses, a generalization of such measures for the n-class problem is accomplished. The
ideal goal is to represent classification problems as points in a space defined by a number of
measures, where clusters can be related to classification performances. Next paragraphs de-
scribe the measures selected for the present study (the same short notation as in the original
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paper [7] is here used).

2.1 Generalized Fisher’s discriminant ratio (F1)

The plain version of this well-known measure computes how separated are two classes
according to a specific feature. It compares the difference between class means with the
sum of class variances. A possible generalization for C classes, which also considers all
feature dimensions, can be stated as follows:

F1 =
∑C

i=1 ni · δ(m,mi)∑C
i=1

∑ni
j=1 δ(xi

j ,mi)
(1)

where ni denotes the number of samples in class i, δ is a metric, m is the overall mean, mi

is the mean of class i, and xi
j represents the sample j belonging to class i.

2.2 Volume of overlap region (F2)

The original measure computes, for each feature, the length of the overlap range normal-
ized by the length of the total range in which all values of both classes are distributed. The
volume of the overlap region for two classes is the product of normalized lengths of over-
lapping ranges for all features. Our generalization sums this measure for all pairs of classes,
that is,

F2 =
∑

(ci,cj)

∏
k

min{max(fk, ci),max(fk, cj)} − max{min(fk, ci),min(fk, cj)}
max{max(fk, ci),max(fk, cj)} − min{min(fk, ci),min(fk, cj)}

(2)

where (ci, cj) goes through all pair of classes, k takes feature index values, while min(fk, ci)
and max(fk, ci) compute the minimum and maximum values of feature fk in class ci, re-
spectively.

2.3 Feature efficiency (F3)

In [7], the feature efficiency is defined as the fraction of points that can be separated by a
particular feature. For a two-class problem, the original measure takes the maximum feature
efficiency. This paper considers the points in the overlap range (instead of those separated
points as in the original formulation). The measure value for C classes is the overall fraction
of points in some overlap range of any feature for any pair of classes. Obviously, points in
more than one range are counted once. This measure does not take into account the joint
contribution of features.
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2.4 Non-parametric separability of classes (N2, N3)

The first measure (N2) is the ratio of the average distance to intraclass nearest neighbor and
the average distance to interclass nearest neighbor. It compares the intraclass dispersion
with the interclass separability. Smaller values suggest more discriminant data. The second
measure (N3) is simply the estimated error rate of the 1-NN rule by the leaving-one-out
scheme.

2.5 Density measure (T2)

This measure does not characterize the overlapping level, but contributes to understand the
behavior of some classification problems. It describes the density of spatial distributions of
samples by computing the average number of instances per dimension.

3 Editing and condensing

Prototype Selection techniques have been proposed as a way of minimizing some problems
related to the k-NN classifier. They consist of selecting an appropriate reduced subset of in-
stances and applying the 1-NN rule using only the selected examples. Two different families
of prototype selection methods exist in the literature: editing and condensing algorithms.

Editing [5,10,13–15] eliminates erroneous cases from the original set and ”cleans” pos-
sible overlapping between regions from different classes, what usually leads to significant
improvements in performance. Thus the focus of editing is not on reducing the set size,
but on defining a high quality TS by removing outliers. Nevertheless, as a by-product these
algorithms also obtain some decrease in size and consequently, a reduction of the computa-
tional burden of the 1-NN classifier.

Wilson [14] introduced the first editing proposal. Briefly, this consists of using the k-NN
rule to estimate the class of each instance in the TS, and removing those whose class label
does not agree with that of the majority of its k neighbors. Note that this algorithm tries to
eliminate mislabeled instances from the TS as well as close border instances, smoothing the
decision boundaries.

On the other hand, condensing [1, 4, 6, 9, 11, 12] aims at selecting a sufficiently small
set of training instances that produces approximately the same performance than the 1-NN
rule using the whole TS. It is to be noted that many condensing schemes make sense only
when the classes are clustered and well-separated, which constitutes the focus of the editing
algorithms.

Hart’s algorithm [6] is the earliest attempt at minimizing the number of stored instances
by retaining only a consistent subset of the original TS. A consistent subset, say S, of a
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set of instances, T , is some subset that correctly classifies every instance in T using the
1-NN rule. Although there are usually many consistent subsets, one generally is interested
in the minimal consistent subset (i.e., the subset with the minimum number of instances) to
minimize the cost of storage and computing time. Unfortunately, Hart’s algorithm cannot
guarantee that the resulting subset is minimal in size.

4 Experiments and results

As already stated in Sect. 1, in some cases prototype selection algorithms may produce
an effect different from the one theoretically expected, that is, they may even degrade the
performance of the plain 1-NN classifier. A way of characterizing the problems could be by
using the data complexity measures introduced in Section 2. Thus the experiments reported
in this paper aim at describing the databases in terms of such measures and analyzing the
conditions under which prototype selection methods can perform better than the plain 1-NN
rule.

In our experiments, we have included 17 data sets taken from the UCI Database Repos-
itory (http://www.ics.uci.edu/∼mlearn) and also from the ELENA European
Project (http://www.dice.ucl.ac.be/neural-nets/Research/Projects/
ELENA/). The 5-fold cross-validation error estimate method has been employed for each
database: 80% of the available instances have been used as the TS and the rest of instances
for the test set. The main characteristics of these data sets are summarized in Table 1. Their
values for the complexity measures previously described are summarized in Table 2.

For the prototype selection methods, we have tested Wilson’s editing, Hart’s condens-
ing, and the combining edited and condensed set. In this latter case, we have firstly applied
Wilson’s editing to the original TS in order to remove mislabeled instances and smooth the
decision boundaries, and then Hart’s algorithm has been used over the Wilson’s edited set
to further reduce the number of training examples. After preprocessing the TS by means of
some prototype selection scheme, the 1-NN classifier has been applied to the test set.

Table 3 reports the error rate and the percentage of original training instances retained
by each method for each database. Typical settings for Wilson’s editing algorithm (i.e.,
number of neighbors) have been tried and the ones leading to the best performance have
been finally included. The databases are sorted by the value of F1. By means of the data
complexity measures, we have tried different orderings which could give us an indication
of the relation between the complexity of a data set and the particular method applied to
it. From all those measures, it seems that F1 is the one that better discriminates between
the cases in which an editing has to be firstly applied and those in which one could directly
employ the plain 1-NN rule.

As can be seen in Table 3, Wilson’s editing outperforms the 1-NN rule when F1 is under
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Table 1: Some characteristics of the experimental data sets

Classes Dim Samples

Cancer 2 9 683
Clouds 2 2 5000
Diabetes 2 8 768
Gauss 2 2 5000
German 2 24 1000
Glass 6 9 214
Heart 2 13 270
Liver 2 6 345
Phoneme 2 5 5404
Satimage 6 36 6435
Segment 7 19 2310
Sonar 2 60 208
Texture 11 40 5500
Vehicle 4 18 846
Vowel 11 10 528
Wform 3 21 4999
Wine 3 13 178

0.410 (that is, when regions from different classes are strongly overlapped). Consequently,
for a particular problem, one could decide to apply an editing to the original TS or directly
to employ the plain 1-NN classifier according to the value of F1. For data sets with no (or
weak) overlapping (in Table 3, those with F1 > 0.410), the use of an editing can become
even harmful in terms of error rate: it seems that editing removes some instances that are
defining the decision boundary and therefore, this produces a certain change in the form of
such a boundary. Another important result in Table 3 refers to the percentage of training
instances given by Hart’s condensing: in general, the reductions in TS size for databases
with high overlap are lower than those in the case of data sets with weak overlapping.

From the results included in Table 3, it is possible to distinguish between two situations.
First, for domains in which the classes are strongly overlapped, one has to employ an editing
algorithm in order to obtain a lower error rate (in these cases, benefits in size reduction and
classification time are also obtained). Second, for databases with weak overlapping (i.e.,
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Table 2: Problem difficulty measures for the experimental data sets

F1 F2 F3 N2 N3 T2

Cancer 1.315 0.319 0.902 0.220 0.950 76
Clouds 0.245 0.380 0.877 0.019 0.846 2500
Diabetes 0.032 0.252 0.994 0.839 0.679 96
Gauss 0.000 0.309 0.960 0.060 0.650 2500
German 0.026 0.664 0.992 0.794 0.664 42
Glass 0.474 0.013 0.963 0.452 0.734 24
Heart 0.041 0.196 0.985 0.838 0.567 21
Liver 0.017 0.073 0.968 0.853 0.623 58
Phoneme 0.082 0.271 0.878 0.067 0.912 1081
Satimage 2.060 0.000 0.883 0.215 0.909 179
Segment 0.938 0.000 0.583 0.072 0.967 122
Sonar 0.029 0.000 0.947 0.544 0.827 3
Texture 3.614 0.000 0.726 0.119 0.992 138
Vehicle 0.259 0.169 0.968 0.273 0.653 47
Vowel 0.536 0.482 0.962 0.129 0.991 53
Wform 0.410 0.007 0.997 0.769 0.780 238
Wine 2.362 0.000 0.315 0.018 0.770 14

F1 is high enough), in which error rate given by the 1-NN rule can be even lower than that
achieved with an editing, one should still decide when to apply a prototype selection scheme
(reducing time and storage needs) and when to directly use the 1-NN classifier without any
preprocessing. In many problems, differences in error rate are not statistically significant
(for example, in Satimage database, the error rates for Wilson’s editing and 1-NN rule are
16.90% and 16.40%, respectively) and in such cases, savings in memory requirements and
classification times can become the key issues for deciding which method to employ.

Fig. 1 illustrates the situation just described, comparing the error rate and the percentage
of training instances for two databases with a high value of F1. For the Satimage database,
differences in error rate are not statistically significant but, in terms of percentage of training
instances, the combined approach is clearly the best option: it stores only 7.23% of the
original samples and provides an error rate approximately 2% higher than the plain 1-NN
rule with the whole TS (100% of instances). Results for the Wine database are similar to
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Table 3: 1-NN error rate and percentage of training instances (in brackets), sorted by F1
(values in italics indicate the lowest error rate for each database)

F1 Wilson Hart Combined 1-NN

Gauss 0.000 30.24 (68.93) 35.86 (54.07) 30.76 (8.08) 35.06
Liver 0.017 32.18 (66.59) 37.68 (59.13) 34.17 (17.46) 34.50
German 0.026 30.60 (68.10) 38.50 (53.45) 30.49 (10.73) 34.69
Sonar 0.029 43.03 (82.04) 50.40 (34.49) 40.42 (17.25) 47.89
Diabetes 0.032 27.21 (71.66) 35.29 (51.47) 27.34 (10.78) 32.68
Heart 0.041 32.61 (58.06) 42.14 (59.54) 35.20 (13.52) 41.83
Phoneme 0.082 26.43 (89.42) 34.07 (21.55) 28.17 (9.28) 29.74
Clouds 0.245 11.52 (88.06) 17.28 (27.25) 11.80 (4.07) 15.34
Vehicle 0.259 36.54 (64.15) 36.76 (53.43) 37.36 (18.65) 35.59
Wform 0.410 18.96 (82.01) 26.01 (38.96) 21.84 (17.09) 22.04

Glass 0.474 32.37 (70.69) 31.35 (47.01) 32.74 (18.74) 28.60
Vowel 0.536 5.23 (96.69) 4.57 (23.40) 8.51 (21.96) 2.10
Segment 0.938 5.28 (96.09) 5.88 (13.73) 6.88 (9.90) 3.72
Cancer 1.315 4.25 (95.54) 6.43 (11.44) 4.39 (3.00) 4.54
Satimage 2.060 16.90 (91.24) 17.94 (18.96) 18.93 (7.23) 16.40
Wine 2.362 29.57 (68.89) 27.59 (40.97) 28.60 (7.92) 26.95
Texture 3.614 1.22 (98.97) 2.91 (8.01) 2.86 (6.86) 1.04

those of the Satimage domain, although now differences in error rate are more important
when comparing Wilson’s editing and 1-NN classifier. As a conclusion, for these cases with
high F1, one has to decide whether it is more important to achieve the lowest error rate but
without any reduction in storage or to attain a moderate error rate with important savings in
memory requirements (and also, in classification times).

Despite F1 results in the complexity measure with the highest discrimination power
in the specific framework of prototype selection, it is to be noted that other measures can
become especially useful for other different tasks. For example, F2 and F3 (conveniently
adapted) could be particularly interesting in the case of feature selection because they could
be used as objective functions to pick subsets of relevant features. On the hand, other
measures constitute a complement in the analysis of certain problems. In this sense, T2 can
help to understand why the plain 1-NN classifier does not perform well in problems with
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Figure 1: Comparing error rate and percentage of the original instances retained by each
method for several databases with high F1

weak overlapping. For example, the 1-NN error rate in Wine database, which corresponds
to a problem with almost no overlapping (F1 = 2.362), is high enough (26.95%); this can
be explained by the fact that there exists a very small number of training instances per
dimension (T2 = 14).

5 Conclusions and future research

The primary goal of this paper has been to analyze the relation between data complexity
and efficiency for the 1-NN classification. More specifically, we have investigated on the
utility of a set of complexity measures as a tool to predict whether or not the application of
some prototype selection algorithm results appropriate in a particular problem.

After testing different data complexity measures, from the experiments carried out over
17 databases, it seems that F1 can become especially useful to distinguish between the
situations in which a prototype selection technique is clearly needed and those in which a
more extensive study has to be considered. While in the former case the prototype selection
approach achieves the lowest error rate and some savings in memory storage, for the later
it is not clear the significance of gains in error rate and therefore, other measures should
be employed because even the application of a method with a higher error rate could be
justified according to other benefits in computational requirements.

It is worth noting that for those situations in which prototype selection degrades the 1-
NN accuracy, one could still reduce the (high) computing time associated to the plain 1-NN
rule by means of fast search algorithms [2]. However, it is known that fast search algo-
rithms can lessen the number of computations during classification but they still maintain
the memory requirements.
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Future work is mainly addressed to extend the data complexity measures employed
in the same framework of the present paper, trying to better characterize the conditions
for an appropriate use of prototype selection techniques. A larger number of editing and
condensing algorithms, both from selection and abstraction perspectives, has also to be
tested in order to understand the relation between data complexity and performance of the
1-NN classifier. Finally, a more exhaustive study will help to categorize the use of several
complexity measures for different pattern recognition tasks.
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Abstract

The simple majority voting scheme constitutes one of the most popular 

techniques to perform the classifier fusion in an ensemble of classifiers. However, 

when the performance of the ensemble members is not uniform, the efficiency of 

this type of voting results affected negatively. In this paper, an experimental 

comparison between simple and weighted voting (both dynamic and static) is 

presented. New weighting methods in the direction of the dynamic approach are also 

introduced. Experimental results with several real-problem data sets demonstrate the 

advantages of the weighting strategies over the simple voting scheme. When 

comparing the dynamic and the static approaches, results show that the dynamic 

weighting is generally superior to the static strategy in terms of classification 

accuracy.

Keywords: Multiple classifier systems; fusion; voting; weighting; nearest 

neighbor.

1 Introduction 

A multiple classifier system (MCS) is a set of individual classifiers whose decisions are 

combined when classifying new patterns. There are many different reasons for combining 

multiple classifiers to solve a given learning problem [6], [12]. First, MCSs try to exploit 

the local different behavior of the individual classifiers to improve the accuracy of the 

overall system. Second, in some cases MCS might not be better than the single best 

classifier but can diminish or eliminate the risk of picking an inadequate single classifier. 

Another reason for using MCS arises from the limited representational capability of 

learning algorithms. It is possible that the classifier space considered for the problem does 

not contain the optimal classifier. 
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Let D =  D1, ..., Dh  be a set of classifiers. Each classifier assigns an input feature 

vector x  to one of the c problem classes. The output of a MCS is an h-dimensional

vector containing the decisions of each of the h individual classifiers: 

[D1(x),..., Dh(x)]T (1)

It is accepted that there are two main strategies in combining classifiers: selection and 

fusion. In classifier selection, each individual classifier is supposed to be an expert in a 

part of the feature space and therefore, we select only one classifier to label the input 

vector x. In classifier fusion, each component is supposed to have knowledge of the 

whole feature space and correspondingly, all individual classifiers decide the label of the 

input vector.  

Focusing on the fusion strategy, the combination can be made in many different ways. 

The simplest one employs the majority rule in a plain voting system [4]. More elaborated 

schemes use weighted voting rules, in which each individual component is associated 

with a different weight [5]. The final decision can be made by majority, average [6], 

minority, medium [7], product of votes, or using some other more complex methods [8], 

[9], [10], [19]. 

In the present work, some methods for weighting the individual components in a 

MCS are proposed, and their effectiveness is empirically tested over real data sets. Three 

of these methods correspond to the so-called dynamic weighting, by using the distances 

to a pattern. The last method, which belongs to the static weighting strategy, estimates the 

leaving-one-out error produced by each classifier in order to set the weights of each 

component [21].  

From now on, the rest of the paper is organized as follows. Section 2 provides a brief 

review of the main issues related to classifier fusion and makes a very simple 

categorization of weighting methods, distinguishing between dynamic and static 

weighting of classifiers. In Section 3, seveal weighting procedures are also introduced. 

The experimental results are discussed in Section 4. Finally, some conclusions and 

possible further extensions are given in Section 5. 

2 Classifier fusion and voting schemes 

As pointed out in the previous section, classifier fusion assumes that all individual 

classifiers are competitive, instead of complementary. For this reason, each component 

takes part in the decision of classifying an input test pattern.  

In the simple voting (by majority), the final decision is taken according to the number 

of votes given by the individual classifiers to each one of the classes, thus assigning the 
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test pattern to the class that has obtained a majority of votes. When working with data 

sets that contain more than two classes, in the final decision ties among some classes are 

very frequently obtained. To solve this problem, several criteria can be considered. For 

instance, to randomly take the decision, or to implement an additional classifier whose 

ultimate goal is to bias the decision toward a certain class [15]. 

An important issue that has strongly called the attention of many researchers is the 

error rate associated to the simple voting method and to the individual components of a 

MCS. Hansen and Salomon [17] show that if each one of the classifiers being combined 

has an error rate less than 50%, it may be expected that the accuracy of the ensemble 

improve when more components are added to the system. However, this assumption not 

always is fulfilled. In this context, Matan [18] asserts that in some cases, the simple 

voting might perform even worse than any of the members of the MCS. Thus some 

weighting method can be employed in order to partially overcome these difficulties. 

A weighted voting method has the potential to make the MCS more robust to the 

choice of the number of individual classifiers. Two general approaches to weighting can 

be remarked: dynamic weighting and static weighting of classifiers. In the dynamic 

strategy, the weights assigned to the individual classifiers can change for each test 

pattern. On the contrary, in the static weighting, the weights are computed for each 

classifier in the training phase, and they are maintained constant during the classification 

of the test patterns. 

3 New weighting functions for classifier fusion 

In the following sections, several weighting functions, both from the dynamic and the 

static categories, are explored. It has to be noted that in the present work, all the 

individual classifiers correspond to the 1-NN (Nearest Neighbor) rule [16]. This is a well-

known supervised non-parametric classifier that combines conceptual and 

implementational simplicity with an asymptotic error rate conveniently bounded in terms 

of the optimal Bayes error. In its classical manifestation, given a set of m previously 

labeled instances (or training set, TS), this classifier assigns any input test pattern to the 

class indicated by the label of the closest example in the TS. The extension of this rule 

corresponds to the k-NN classifier, which consists of assigning an input pattern to the 

class most frequently represented among the k closest training instances. 

3.1 Dudani’s dynamic weighting 

A weighted k-NN rule for classifying new patterns was first proposed by Dudani [3]. The 

votes of the k nearest neighbors are weighted by a function of their distance to the test 
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pattern. In his original proposal, a neighbor with smaller distance is weighted more 

heavily than one with a greater distance: the nearest neighbor gets a weight of 1, the 

furthest neighbor a weight of 0, and the other weights are scaled linearly to the interval in 

between (Eq. 2): 

otherwise1

if 1

1

dd
dd

dd

w
k

k

jk

j (2)

where dj denotes the distance of the j’th nearest neighbor to the test pattern, d1 is the 

distance of the nearest neighbor, and dk indicates the distance of the furthest (k’th) 

neighbor.

Now, this function will be here applied to make the dynamic weighting of the 

individual components in an ensemble. Correspondingly, the value of k (that is, the 

number of nearest neighbors in Dudani’s rule) will be replaced by the number of 

classifiers h that constitute the MCS. The procedure to assign the weights can be 

described as follows: 

1. Let d
j
(j = 1, …, h) be the distance of an input test 

vector x to its nearest neighbor in the j’th individual 
classifier.
2. Sort the h distances in increasing order: d

1
, …, d

h
.

3. Weight classifier D
j
 by means of function in Eq. 2. 

3.2 Dynamic weighting by index 

Another weighting function is here considered. Like in Dudani’s method, the h distances 

of the test pattern x to its nearest neighbor in each individual classifier have also to be 

sorted. In this case, each classifier Dj is weighted according to the following function: 

1jhwj
(3)

where j represents the index of an individual classifier after sorting the corresponding h

distances.

Consider a MCS consisting of three individual classifiers D = {D1, D2, D3}. The 

distance of the nearest neighbor to a given test pattern x by means of each classifier is d1,

d2, and d3, respectively. Now suppose that d2 < d1 < d3. Thus after sorting the three 

distances, the index of classifier D1 is 2, the index of D2 is 1, and the index of D3 is 3. 
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Consequently, by applying the weighting function in Eq. 3, the resulting weights are w1 = 

3 – 2 + 1 = 2, w2 = 3 – 1 + 1 = 3, and w3 = 3 – 3 +1 = 1. 

3.3 Dynamic weighting by averaged distances 

We here propose a novel weighting function, which is based on the computation of 

averaged distances. In summary, the aim of this new dynamic weighting procedure is to 

reward (by assigning the highest weight) the individual classifier with the nearest 

neighbor to the input test pattern. The rationale behind this is that such a classifier 

probably corresponds to that with the highest accuracy in the classification of the given 

test pattern. Thus each classifier Dj will be weighted by means of the function shown in 

Eq. 4: 

j

h

i

i

j
d

d

w 1 (4)

Note that, by using this weighting function, we effectively accomplish the goal 

previously stated, that is, the individual classifier with the smallest distance will get the 

highest weight, while the one with the greatest distance will obtain the lowest weight. 

3.4 Static weighting by leaving-one-out error estimate 

While the previous methods weight the individual components of a MCS in a dynamic 

manner, the last proposal corresponds to the static category. In this sense, weighting will 

be here performed in the training phase by means of the leaving-one-out error estimate 

method. To this end, for each individual classifier Dj, the following function ej is defined: 

Sx

j xye
m

e ),(
1

(5)

where m denotes the number of patterns in a training sample S, x represents a training 

instance, y is the nearest neighbor of x in S – {x}, and e(y, x) is defined as follows: 

otherwise1

)()(if0
),(

xLyL
xye (6)
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where L(x) is the class label of a pattern x, and L(y) indicates the class label of a pattern y.

By using the error function just introduced, each individual classifier Dj will be 

weighted according to the function in Eq. 7: 

h

i

i

j

j

e

m

e

w

1

1 (7)

Note that this weight is directly related to the amount of errors produced by each 

individual classifier. Thus the classifier with the smallest error will be assigned the 

highest weight, while the one with the greatest error will obtain the lowest weight. 

4 Experimental results 

The results here reported correspond to the experiments over six real data sets taken from 

the UCI Machine Learning Database Repository [11]. For each data set, the 5-fold cross-

validation error estimate method was employed: 80% of the available patterns were for 

training purposes and 20% for the test set. 

The integration of the MCS was performed by manipulating the patterns [12] for each 

of the classes, thus obtaining three different individual classifiers with four variants: 

- Sequential selection [1], [2] (Sel1) 

- Random selection with no replacement [1], [2] (Sel2) 

- Selection with Bagging [13] (Sel3) 

- Selection with Boosting [14] (Sel4) 

The experimental results given in Table 1 correspond to the averages of the general 

accuracy in the fusion, by technique of pattern selection and method of weighting. The 1-

NN classification accuracy for each entire original TS (i.e., with no combination) has also 

been included as the baseline classifier. Analogously, the results for the MCS with simple 

voting (no weighting) are reported for comparison purposes. 

From results in Table 1, some preliminary conclusions can be drawn. First, for all 

data sets there exists at least one classifier fusion technique whose classification accuracy 

is higher than that obtained when using the whole TS (i.e., with no combination). Second, 

comparing the four selection methods, in general Sel1 and Sel4 clearly outperform the 

other two selection approaches (namely, random with no replacement and bagging), 

independent of the voting scheme adopted. On the other hand, focusing on sequential 
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selection (Sel1) and boosting (Sel4), the accuracy of Sel1 results superior to that of Sel4 

in most cases (22 out of 30). 

  Cancer Heart Liver Pima Glass Vehicle 

Original TS 95.62 58.15 65.22 65.88 70.00 64.24 

Simple voting 

Sel1 96.93 65.19 63.77 68.89 68.00 64.48 

Sel2 66.42 50.37 57.10 59.35 56.50 62.10 

Sel3 72.12 45.19 50.14 60.00 60.50 60.55 

Sel4 94.16 57.78 62.03 70.07 62.50 60.43 

Dudani’s weighting     

Sel1 95.62 58.15 65.51 68.37 70.00 64.24 

Sel2 68.47 52.96 56.23 59.08 67.00 61.02 

Sel3 74.16 47.41 52.17 60.26 65.00 60.91 

Sel4 95.89 58.52 60.87 67.58 66.50 64.24 

Weighting by index     

Sel1 95.91 61.11 62.61 68.24 71.00 64.48 

Sel2 65.84 54.07 53.04 62.09 62.00 62.34 

Sel3 72.41 47.78 49.28 60.92 61.50 60.79 

Sel4 99.27 57.41 59.42 70.07 66.00 62.81 

Weighting by averaged distances   

Sel1 96.50 65.56 65.22 68.37 68.00 64.72 

Sel2 62.04 49.63 57.10 59.08 59.00 59.00 

Sel3 70.80 45.93 50.14 60.26 62.50 63.41 

Sel4 93.58 57.78 62.32 70.85 63.00 61.50 

Static weighting      

Sel1 96.93 65.19 63.77 68.89 68.50 63.65 

Sel2 66.42 50.37 57.10 59.35 56.00 62.93 

Sel3 72.12 45.19 50.14 60.00 60.50 59.84 

Sel4 94.16 59.63 62.03 70.07 63.00 61.03 

Table 1: Averaged accuracy of different classifier fusion methods. Values in italics 
indicate the best selection method for each voting scheme and each data set. Boldface is 

used to emphasize the highest accuracy for each problem 

If we now compare the simple and the weighted voting schemes, we can observe that 

in all data sets, we can find a weighting technique with better results than those of the 

simple majority voting. The Dudani’s weighting outperforms all the other methods in 
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Liver database. The weighting by index is the best in Cancer and Glass domains. The 

weighting by averaged distances achieves the highest accuracy in Heart, Pima and 

Vehicle databases. 

Finally, with respect to differences in accuracy between dynamic and static 

weighting, it has to be especially remarked the fact that results of the static strategy are 

always inferior to those of the dynamic approach. As can be seen, although differences 

are not significant, the static weighting does not seem to present any advantage with 

respect to the dynamic weightings. 

5 Conclusions and future work 

In a MCS, performance mainly depends on the accuracy of the individual classifiers and 

on the specific way of combining the individual decisions. Correspondingly, it results 

crucial to appropriately handle the combination of decisions in order to attain the most 

accurate system. In the present work, several weighting methods, both from the dynamic 

and static approaches, have been introduced and empirically compared with the simple 

majority voting scheme. 

From the experiments carried out, our study shows that the weighting voting clearly 

outperforms the simple voting procedure, which erroneously assumes the uniform 

performance of the individual components of a MCS. Another issue to remark is that the 

dynamic weighting is superior to the static strategy, in terms of classification accuracy. 

At this moment, it has to be admitted that it results difficult enough to propose one of 

the dynamic weightings as the best method. In fact, differences among them are more or 

less significant depending on each particular database. Nevertheless, one can see that the 

weighting by averaged distances achieves the highest accuracy in 3 out of 6 problems 

(50% of the cases), while the weighting by index in 2 out of 6 databases (33% of the 

cases). 

Future work is primarily addressed to investigate other weighting functions applied to 

classifier fusion. For instance, the inverse distance function proposed by Shepard [20] 

could represent a good alternative to other weighted voting schemes with low 

classification accuracy. On the other hand, the results reported in this paper should be 

viewed as a first step towards a more complete understanding of the behavior of the 

weighted voting procedures and consequently, it is still necessary to perform a more 

extensive analysis of the dynamic and static weighting strategies over a larger number of 

synthetic and real problems. 

Pattern Recognition : Progress, Directions and Applications 359



Acknowledgements 

This work has been partially supported by grant TIC2003-08496 from the Spanish 

CICYT.

References

1. Barandela, R., Valdovinos, R.M., Sánchez, J.S.: New applications of ensembles of 

classifiers, Pattern Analysis and Applications 6 (2003) 245-256. 

2. Valdovinos, R.M., Barandela, R.: Sistema de Múltiples Clasificadores. Una alternativa 

para la Escalabilidad de Algoritmos, In: Proc. of the 9th Intl. Conference of Research 

on Computer Sciences, Puebla, Mexico (2002). 

3. Dudani, S.A.: The distance weighted k-nearest neighbor rule, IEEE Trans. on 

Systems, Man and Cybernetics 6 (1976) 325-327. 

4. Kuncheva, L.I., Kountchev, R.K.: Generating classifier outputs of fixed accuracy and 

diversity, Pattern Recognition Letters 23 (2002) 593–600. 

5. Woods, K., Kegelmeyer Jr., W.P, Bowyer, K.,: Combination of multiple classifiers 

using local accuracy estimates, IEEE Trans. on Pattern Analysis and Machine 

Intelligence 19 (1997) 405-410. 

6. Kuncheva, L.I.: Using measures of similarity and inclusion for multiple classifier 

fusion by decision templates, Fuzzy Sets and Systems 122 (2001) 401-407. 

7. Chen, D., Cheng, X.: An asymptotic analysis of some expert fusion methods, Pattern 

Recognition Letters 22 (2001) 901–904. 

8. Kuncheva, L.I., Bezdek, J.C., Duin, R.P.W.: Decision templates for multiple classifier 

fusion, Pattern Recognition 34 (2001) 299-314. 

9. Ho, T.-K.: Complexity of classification problems and comparative advantages of 

combined classifiers,  In: Proc. of the 1st Intl. Workshop on Multiple Classifier 

Systems, Springer (2000) 97-106. 

10. Bahler, D., Navarro, L.: Methods for combining heterogeneous sets of classifiers, In: 

Proc. of the 17th Natl. Conference on Artificial Intelligence (AAAI-2000), Workshop 

on New Research Problems for Machine Learning (2000). 

11. Merz, C.J., Murphy, P.M.: UCI Repository of Machine Learning Databases, Dept. of 

Information and Computer Science,  Univ. of California, Irvine, CA (1998).  

12. Dietterich, G.T.: Machine learning research: four current directions, AI Magazine 18 

(1997) 97–136. 

13. Breiman, L.: Bagging predictors, Machine Learning 24 (1996) 123-140. 

14. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm, In: Proc. of 

the 13th Intl. Conference on Machine Learning, Morgan Kaufmann (1996) 148-156. 

360 Pattern Recognition : Progress, Directions and Applications



15. Kubat, M., Cooperson Jr., M.: Voting nearest neighbor subclassifiers, In: Proc. of the 

17th Intl. Conference on Machine Learning, Morgan Kaufmann, Stanford, CA (2000) 

503-510. 

16. Dasaraty, B.V..: Nearest Neighbor (NN) Norms: NN Pattern Classification 

Techniques, IEEE Computer Society press, Los Alamitos, CA (1991). 

17. Hansen, L.K., Salomon, P. : Neural network ensembles, IEEE Trans. on Pattern 

Analysis and Machine Intelligence 12  (1990) 993-1001. 

18. Matan, O.: On voting ensembles of classifiers, In: Proc. of the 13th Natl. Conference 

on Artificial Intelligence (AAAI-96), Workshop on Integrating Multiple Learned 

Models (1996) 84–88. 

19. Ho, T.-K., Hull, J.J., Srihari, S.N.: Combination of Decisions by Multiple Classifiers, 

Structured Document Image Analysis, In: Springer-Verlag, Heidelberg (1992) 188–

202.

20. Shepard, R.N.: Toward a universal law of generalization for psychological science, 

Science 237 (1987) 1317-1323. 

21. Verikasa, A., Lipnickasb A., Malmqvista, K., Bacauskieneb, M., Gelzinisb, A.: Soft 

combination of neural classifiers: a comparative study, Pattern Recognition Letters 20 

(1999) 429-444. 

Pattern Recognition : Progress, Directions and Applications 361



Nearest neighbor learning by means of labelled and
unlabelled data

F. Vázquez†, J.S. Sánchez‡, F. Pla‡
†Dept. de Computación, Universidad de Oriente

Av. Patricio Lumumba s/n, 90100 Santiago de Cuba, Cuba
E-mail: fvazquez@csd.uo.edu.cu

‡ Dept. de Llenguatges i Sistemes Informàtics, Universitat Jaume I
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Abstract

A classification system with the capability of continuously increasing its knowl-
edge during the operational phase is here discussed. This idea is strongly related to
learning in partially supervised environments in the sense that at the start, the system
has only a (possibly) reduced number of labelled instances, but this current knowledge
will be progressively increased during the classification of new unlabelled patterns.
The learning system proposed in the present paper is based on the popular nearest
neighbor classifier and some related techniques. The effectiveness of the algorithm is
experimentally evaluated using some benchmark data sets taken from the UCI Machine
Learning Database Repository.

1 Introduction

Learning algorithms have been traditionally sorted into two broad categories: supervised
and unsupervised, depending on whether labelled data is available or not. In a supervised
scenario, the learner is based on the information supplied by a a set of labelled instances
(training set, TS) that are assumed to correctly represent all the relevant classes. Violation
of this assumption may seriously deteriorate the final classification accuracy.

Supervised classification methods usually operate in two steps: a) the learning or train-
ing phase, for the system to acquire the necessary knowledge from the labelled instances
to make itself able to differentiate among the regarded classes; and b) the classification or
operational phase, wherein the system proceeds to identify new unknown cases as members
of the considered classes. Second stage is not started before completion of the first one and
thereafter, no new knowledge is attained.

In the unsupervised learning problem, the learner is provided with only unlabelled ex-
amples. The task is to find ”clusters” or groups of similar cases that probably correspond to
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the underlying classes. Unsupervised learning is often applied to discover structure, regu-
larities or categories in the data, but typically requires human analysis to determine whether
the discovered regularities are interesting, and to determine the correspondence between
clusters and meaningful categories.

Since the early 90’s a third approach to learning, namely partially supervised, has re-
ceived much attention [2–4, 14, 15, 18]. This paradigm conceptually represents a compro-
mise between supervised and unsupervised learning, thus using a (generally) small number
of labelled instances together with a (possibly) large set of unlabelled samples. Relevance
of partially supervised learning systems is due to the fact that in many practical applica-
tions, collecting labelled training instances can be costly and time-consuming, while it is
frequently easy to obtain unlabelled examples. Consequently, it results interesting to de-
velop algorithms capable of employing both labelled and unlabelled data for classification.
Learning from partially labelled data is also referred to as semi-supervised learning [1, 13].

This paper presents an idea to implement a classification system that not only can learn
by operating with the labelled training instances, but could also benefit from the experience
obtained when classifying new unlabelled patterns. The approach for working with ”on-
going learning” presents some advantages: the classifier is more robust because errors or
omissions in the original TS can be further corrected during operation, and the system is
capable to continue adapting itself to a possibly changing environment.

The ultimate aim is to facilitate the learning system to progressively increase its knowl-
edge and consequently, to enhance the final classification accuracy. In our proposal, the
nearest neighbor (NN) rule is employed as the central classifier, mainly because of its flex-
ibility. Because a basic goal is to make the ongoing learning procedure as automatic as
possible, it has been designed to work by incorporating new examples into the TS after they
have been labelled by the own system. This way, however, presents the danger of perfor-
mance deterioration by the inclusion of potentially mislabelled patterns to the TS. In order
to minimize the risk of introducing these errors, we will employ some filters that detect and
discard those mislabelled cases.

From now on, the rest of the paper is organized as follows. Section 2 provides a general
description of the k-NN rule along with the most important pros and cons of using this clas-
sifier. Section 2 also describes an editing algorithm based on an estimation of probabilities.
In Sect. 3, we introduce the ongoing learning system proposed in the present paper. Next,
Sect. 4 provides the results obtained from a preliminary empirical study. Finally, the main
conclusions and possible directions for future research are outlined in Sect. 5.
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2 The k-nearest neighbors classifier

One of the most widely studied supervised classification approaches corresponds to the
k-NN decision rule [6]. In brief, given a set of n previously labelled examples, say X =
{(x1, ω1), (x2, ω2), . . . , (xn, ωn)}, the k-NN classifier consists of assigning an input sample
x to the class most frequently represented among the k closest instances in the TS, according
to a certain similarity measure (generally, the Euclidean distance metric). A particular case
of this rule is when k = 1, in which an input sample is decided to belong to the class
indicated by its closest neighbor.

Several properties make the k-NN classifier quite attractive, including the fact that the
asymptotic risk (i.e., when n → ∞) tends to the optimal Bayes risk as k → ∞ and k/n →
0 [5]. If k = 1, the upper bound of the classification error rate is approximately twice the
Bayes error [6]. The optimal behavior of this rule in asymptotic classification performance
along with a conceptual and implementational simplicity make it a powerful classification
technique capable of dealing with arbitrarily complex problems, provided that there is a
large enough number of training instances available.

However, in many practical situations, such a theoretical maximum can hardly be achieved
due to certain inherent weaknesses that significantly reduce the effective applicability of k-
NN classifiers. In particular, the performance of these rules, as with any non-parametric
classification approach, is extremely sensitive to data complexity [7].

For example, classification accuracy of k-NN classifiers significantly drops down in
domains where many data attributes are irrelevant [16]. Such attributes inappropriately
affect the values returned by most dissimilarity metrics. Another problem using the k-
NN rule refers to the seeming necessity of a lot of memory and computational resources
(especially, in applications with a huge number of training examples). Moreover, these
classifiers cannot be straightforwardly employed in domains with missing attributes. Also,
the class imbalance (i.e., high differences in class distributions) has been reported as an
obstacle on applying distance-based algorithms to real-world problems [11].

On the other hand, class overlapping and noise or imperfections in the TS negatively
affect the performance of the k-NN classifiers, and this has been widely demonstrated in
many empirical studies (e.g., see [17]). That is the reason why a considerable amount of
works have been devoted to improve the classification accuracy by eliminating outliers from
the original TS and also cleaning possible overlapping between classes. This strategy has
generally been referred to as editing [9].

The general idea behind almost any editing procedure consists of estimating the true
classification of instances in the TS to retain only those which are correctly labelled. Dif-
ferences among most editing schemes refer to the classification rule employed for editing
purposes along with the error estimate and the stopping criterion [10].
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The first proposal to select a representative subset of labelled instances corresponds to
Wilson’s editing [21], in which a k-NN classifier is used to keep in the TS only ”good” ex-
amples (that is, training instances that result correctly classified by the k-NN rule). Tomek [19]
extended this scheme with a procedure that utilized all the l-NN classifiers, with l ranging
from 1 through k, for a given value of k.

A slight modification of the original Wilson’s algorithm consists of using, instead of the
k-NN classifier, an alternative rule based on the k nearest centroid neighbors (k-NCN) [17],
which has been proven to be superior to the traditional k-NN classifier in many practical
situations. This kind of neighborhood is defined taking into account not only the proximity
of instances to a given input pattern but also their symmetrical distribution around it.

2.1 Estimating class conditional probabilities for editing

Recently, new editing schemes have been proposed, in which the elimination rule is based
on an estimation of the probability of each training instance to belong to a certain class,
that is, considering the form of the underlying probability distribution in the neighborhood
of a point [20]. In order to estimate the values of these distributions, we can compute the
distance between a given sample and the training instances.

Given a sample, the closer an instance, the more likely this sample belongs to the same
class as the one of such an instance. Accordingly, let us define the probability Pi(x) that a
sample x belongs to a class i as:

Pi(x) =
k∑

j=1

pj
i

1
1 + δ(x, xj)

(1)

where pj
i denotes the probability that the k nearest neighbor xj belongs to class i, and δ

represents a certain distance function. Initially, the values of pj
i for each instance are set to

1 for its class label assigned in the TS, and 0 otherwise.
The meaning of the above expression states that the probability that a sample x belongs

to a class i is the weighted average of the probabilities that its k nearest neighbors belong
to that class. The weight is inversely proportional to the distance from the sample to the
corresponding k nearest neighbors. From this, we can derive a new decision rule, namely
k-Prob, in which a new sample x will be assigned to the class whose probability Pi(x) is
maximum.

Following the general scheme of Wilson’s editing, the new algorithms consist of elimi-
nating from the TS those instances whose label does not coincide with that assigned by the
decision rule based on class conditional probabilities (k-Prob).

A further extension to this proposal consists of considering a threshold, 0 < µ < 1,
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in the classification rule, with the aim of eliminating those instances whose probability to
belong to the class assigned by the rule is not significant. Correspondingly, we are removing
samples from the TS that are in the decision borders, where the class conditional probabil-
ities overlap and are confusing, in order to obtain edited sets whose instances have a high
probability of belonging to the class assigned in the TS.

3 The use of unlabelled data to increase knowledge

A basic goal of the learning system presented in this paper is to make it as automatic as pos-
sible. Accordingly, the procedure has been designed to work by incorporating new patterns
into the TS after they have been labelled by the own system (without the participation of a
human expert). However, it is evident that this working method can be self-defeating, in the
sense that these new training elements would have the class label directly assigned by the
decision rule. Therefore, there is the risk to incorporate several mislabelled cases into the
TS and consequently, to degrade the overall system accuracy. The system we have designed
attempts to overcome such a difficulty by employing some editing algorithms.

On the other hand, albeit the training instances are generally labelled by human experts
(or, at least, under their supervision), it is possible to introduce errors into the TS. Thus our
initial task will consists of looking for outliers in the TS in order to obtain a collection of
correctly labelled instances. In summary, the learning procedure for partially supervised
domains consists of the following steps:

1) Initial TS is stored in memory.

2) A first filter is applied to the original TS in order to remove possible noisy
instances. As a by-product, it also produces a reduction in the TS size. The
resulting edited set will be here referred to as base knowledge.

3) Classification phase starts with the base knowledge as the TS.

4) The set of new labelled patterns (those classified during the previous step) is
now edited in order to detect possible misclassifications. The patterns iden-
tified as erroneous by the editing algorithm will be removed from that set.

5) The base knowledge is now updated by incorporating the new labelled patterns
that have not been discarded in the previous step.

6) Return to Step 3 with the new base knowledge.

For the filters considered in this procedure, one could employ any editing algorithm. In
the present paper, we have applied two of the schemes introduced in Sect. 2: the k-NCN
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editing, and the first algorithm based on class conditional probabilities, namely Wilson-
Prob [20]. Analogously, the classification phase (Step 3) can be performed by applying any
classifier. Here we have used the classical k-NN rule, the k-NCN classifier, and the new
k-Prob decision scheme.

Note that the original base knowledge constitutes the only supervised element of our
learning system. The unsupervised component comes from the unlabelled patterns that are
sequentially classified and edited by the own system.

Dasarathy [8] proposed a decision system with a design very related to ours. He was
also concerned with the robustness of the system through varying domains and with the
problem of unrepresentative pre-training. The latter is what he called ”partially exposed
environments”. Consequently, Dasarathy presented an on-line adaptive learning system
with two capabilities: a) to progressively improve the classification of patterns belonging to
the known classes and, b) to detect the objects not belonging to the currently known classes

However, Dasarathy’s system requires the steady participation of a human expert to
be in charge of the evaluation of the labels assigned by the system to new patterns and
to decide which of them are to be incorporated into the TS. Unfortunately, in real-world
operational phase, such operator supervision may be unavailable. We avoid this bottleneck
by including in our procedure the necessary tools to allow the system to decide which pieces
of new knowledge are trustworthy enough to be accepted.

4 Experimental results

In our experiments, we have included four data sets taken from the UCI Machine Learning
Database Repository (http://www.ics.uci.edu/∼mlearn). A number of different
partitions were randomly produced for each data set, all keeping the a priori class probabil-
ities. One of these partitions is used as the initial TS, one as an independent validation set,
and the rest will be employed as sets of unlabelled data in order to simulate the sequence
required for developing the capacity of increasing the knowledge by means of the algorithm
presented in the previous section.

Data set Classes Features Size % Class 1 % Class 2 Partitions
Breast 2 9 683 65.2 34.8 10
Diabetes 2 8 786 34.9 65.1 11
German 2 24 1002 70.4 29.6 14
Heart 2 13 270 55.6 44.4 9

Table 1: A brief summary of the UCI databases used in the experiments.
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The main characteristics of the data sets used in the present experiments are summa-
rized in Table 1. The column ”Partitions” indicates the total number of random partitions
produced for each database. This number means that, for example, in Breast database the
classification system will have 8 opportunities to increase its base knowledge, that is, the
number of sets with unlabelled data. By this, it is evident that the amount of labelled in-
stances is much smaller than that of the unlabelled patterns. The reason is that, as already
stated in Sect. 1, in real applications collecting labelled examples often becomes a costly
and difficult process, thus we are here reproducing this practical situation.

The experiments consist of comparing the 1-NN classification accuracy when using the
initial TS with that obtained when incorporating the new labelled patterns to the TS af-
ter processing each of the partitions. The aim is to evaluate the capacity of increasing the
knowledge with the application of our learning algorithm in a partially supervised environ-
ment.

t Alg1 Alg2 Alg3 Alg4
0 92.54 92.54 92.54 92.54
1 94.03 94.03 94.03 94.03
2 94.03 94.03 94.03 94.03
3 94.03 94.03 94.03 94.03
4 95.52 94.03 92.54 95.52
5 95.52 94.03 92.54 95.52
6 95.52 94.03 92.54 95.52
7 95.52 95.52 94.03 95.52
8 95.52 95.52 94.03 95.52

1-NN 92.48

Table 2: Classification accuracies for Breast database (1-NN indicates the classification
accuracy when using the original TS without any editing).

Tables 2, 3, 4 and 5 provide the classification accuracies over the different databases
used in the present experiments. Column t refers to each partition included in the process.
Thus t = 0 represents the initial base knowledge, that is, the original TS after being edited.
The set obtained at any time t > 0 is then incorporated into the previous knowledge (the
set of instances available at time t − 1). For example, in t = 1 the current knowledge
refers to that acquired in t = 0, and it is now employed to classify the first set of unlabelled
patterns. After classifying, we edit the new labelled instances in order to discard possible
misclassifications. Then the current knowledge is updated by including the instances that
have not been eliminated in editing. The result will be the input set in t = 2.

The meaning of Alg1, Alg2, Alg3, and Alg4 in Tables 2, 3, 4 and 5 is as follows. In
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the case of Alg1, we have employed the k-NCN algorithm for editing and the k-NN rule
for classification. Alg2 uses the k-NCN algorithm both for editing and for classifying new
patterns. Alg3 applies Wilson-Prob for editing and the k-Prob decision rule for classifica-
tion. Finally, Alg4 is equal to Alg3, but using the nearest centroid neighborhood instead of
the classical nearest neighborhood. Values in bold type indicate the first occurrence of the
highest accuracy for each algorithm and each database.

t Alg1 Alg2 Alg3 Alg4
0 66.67 66.67 70.24 68.45
1 66.07 66.07 70.24 69.05
2 66.07 68.45 69.64 69.64
3 66.07 69.64 67.86 69.64
4 65.48 69.05 67.26 69.64
5 65.48 69.05 67.86 69.64
6 66.07 69.64 67.86 69.64
7 66.67 70.24 67.86 70.24
8 67.26 70.83 67.86 70.83
9 67.26 68.45 66.67 70.24

1-NN 66.32

Table 3: Classification accuracies for Diabetes database (1-NN indicates the classification
accuracy when using the original TS without any editing).

From the results reported in Tables 2 and 3, some conclusions can be drawn. First, it has
to be noted that all implementations outperform the 1-NN classification accuracy reported
as a baseline. On the other hand, except Alg3 when applied over Diabetes and German
databases, all the other cases show a certain improvement in performance with respect to
the original edited TS (t = 0). Nonetheless, in terms of accuracy, it seems difficult to
decide which learning algorithm is the best. In practice, any of those three algorithms
(Alg1, Alg2, and Alg4) could constitute a good solution for increasing the knowledge in a
partially supervised environment.

It is worth pointing out the fact that in general, the system obtains a maximum value
in performance after processing a relatively small number of partitions. This is important
because it can mean that after a number of iterations, the inclusion of more instances does
not provide more information to the system. In this situation, the system increases the
size of the TS, but without increasing its knowledge. This is a crucial issue that will be
investigated in further extensions to this work.
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t Alg1 Alg2 Alg3 Alg4
0 67.61 67.61 71.83 69.01
1 69.01 69.01 71.83 69.01
2 70.42 70.42 71.83 69.01
3 70.42 70.42 71.83 69.01
4 70.42 70.42 70.42 69.01
5 70.42 70.42 67.61 70.42
6 67.61 70.42 67.61 70.42
7 67.61 70.42 69.01 70.42
8 67.61 70.42 69.01 70.42
9 67.61 70.42 69.01 70.42

10 67.61 70.42 70.42 70.42
11 67.61 70.42 70.42 70.42
12 67.61 70.42 70.42 70.42

1-NN 65.81

Table 4: Classification accuracies for German database (1-NN refers to the classification
accuracy when using the original TS without any editing).

t Alg1 Alg2 Alg3 Alg4
0 51.61 51.61 54.84 54.84
1 61.29 58.06 58.06 61.29
2 61.29 64.52 64.52 61.29
3 64.52 64.52 64.52 64.52
4 67.74 64.52 64.52 64.52
5 67.74 64.52 64.52 64.52
6 67.74 64.52 64.52 64.52
7 67.74 64.52 64.52 67.74

1-NN 53.33

Table 5: Classification accuracies for Heart database (1-NN refers to the classification ac-
curacy when using the original TS without any editing).

5 Conclusions and further extensions

In this paper, a learning algorithm to increase the knowledge in partially supervised envi-
ronments has been introduced. It makes use of a reduced number of labelled instances and a
(possibly) large amount of unlabelled patterns. The system includes a set of tools allowing
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to filter the new knowledge acquired during operation. Thus we pursue to avoid the risk
of incorporating several mislabelled patterns into the TS and consequently, to degrade the
overall system performance.

In the empirical evaluation of the learning system, we have used different classifica-
tion rules and several editing algorithms. Except in the case of employing a scheme based
on class conditional probabilities for both classification and editing (Alg3), all the other
alternatives have been proven to perform well enough for increasing the knowledge.

An important issue related to the performance of a system with the capability of in-
creasing its knowledge refers to the possibility for the TS size to grow too much and con-
sequently, some problems related to storage space and classification time can make such a
system useless. Although editing has the property, as a by-product, of reducing the TS size,
this is not achieved in a considerable amount. Accordingly, possible extensions to this work
are in the direction of including some techniques to intelligently reduce the TS size. To this
end, both adaptive and selective condensing algorithms [12] can be of interest to control the
TS size.

Also, the possibility of discovering new classes not present in the original TS can result
important for this kind of learning systems in partially supervised domains. Therefore,
future research includes the study of unsupervised techniques in order to incorporate this
additional capability into our learning system.
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