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Abstract

This paper proposes a segmentation algorithm based on fusion of range and intensity images using robust trimmed
methods. Based on the Bayesian theory, a priori knowledge is represented using the Markov random "eld (MRF).
A maximum a posteriori (MAP) estimator is constructed using the edge features extracted from both range and intensity
images. Objects are represented by a number of local planar surfaces in range images, and the parametric space for
surface representation is constructed with the surface parameters estimated pixel-by-pixel based on the least trimmed
squares (LTS) method. Whereas in intensity images, the �-trimmed variance is adopted as the feature for edge extraction.
A "nal edge map is obtained by the MAP estimator that is constructed using the likelihood functions based on the edge
information obtained from range and intensity images. Finally, an image is segmented using the fused edge map.
Computer simulation results show that our new segmentation algorithm e!ectively segments test images, independent of
shadow, noise, and lighting environment. � 2001 Pattern Recognition Society. Published by Elsevier Science Ltd. All
rights reserved.

Keywords: Image segmentation; Edge detection; Surface parameter estimation; Robust estimation; Markov random "eld; MAP
estimation; �-trimmed method; Least trimmed squares (LTS) method

1. Introduction

The computer vision system provides the visual ability
for automatic understanding of the three-dimensional
(3D) world. The conventional computer vision systems
with intensity images have found di$culties in extracting
reliable features for e!ective image analysis, because of
varying statistical characteristics such as sensitivity to
noise, re#ectance property of object surfaces, lighting
environment, and so on. In range images, the pixel value
represents the shortest distance from the sensed focal
plane to the point on the surface of a 3D object. The
range image directly provides explicit 3D geometric in-
formation about the objects and is independent of the
intensity of a light source, illuminating conditions of

the environment, the re#ectance of object surfaces, and
the shadow of the objects. Thus, 3D modeling and object
recognition using range images can be achieved with less
high-level processing steps [1].
Noise in range image acquisition is modeled as

a Gaussian and impulse noise mixture. Since range and
intensity images are represented in di!erent coordinates,
coordinates transformation is needed. Because of coordi-
nates transformation, range data in occluded regions
are sometimes absent and the missing range data are
regarded as impulse noise, which leads to undesirable
error in 3D modeling or object recognition.
The edges, important information in image analysis

and computer vision, can be classi"ed as step edges,
roof edges, shadow edges, albedo edges, etc. The shadow
edges and albedo edges in intensity images should not
be detected because detection of them yields poor seg-
mentation and performance degradation in related
applications. The roof edge in range images detected by
second-order di!erentiation is very sensitive to Gaussian
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or impulse noise. The range image segmentationmethods
[2,3] based on robust statistics were proposed, but they
required a high computational load. For reliable and
e!ective image analysis, fusion of range and intensity
images is required [4}7].
Fusion of information obtained from di!erent sensors

can be achieved heuristically or by the Bayesian ap-
proach. In earlier fusion approaches, the heuristic
methods used a mechanism as employed in the Gil et al.
method [5] which was based on the pixel-by-pixel logical
AND operations applied to the information obtained
from di!erent measurement data. Heuristic fusion algo-
rithms lack robustness and generality because of the
di$culty in deducing general rules to incorporate sensor
uncertainties, whereas the Bayesian approaches use the
Bayes rules to incorporate sensor uncertainties and the
a priori information. AMarkov random "eld (MRF) was
used to model the a priori information of a digital image
[6,7]. Zhang and Wallace [6] and Nadabar and Jain
[7] proposed the Bayesian approaches, in which a priori
modeling of sensor uncertainties and the a priori in-
formation were combined.
The rest of the paper is organized as follows. Section

2 reviews the MRF that models the a priori information
employed in the Bayesian estimator. Section 3 presents
our new segmentation algorithm based on fusion of range
and intensity images. Section 4 shows the experimental
results to illustrate the e!ectiveness of our new segmenta-
tion algorithm. Finally, conclusions are given in Section 5.

2. MRF

The MRF models have been successfully applied to
image modeling in various applications [4}10]. This sec-
tion brie#y describes the background related to theMRF
model.

2.1. MRF and the Gibbs distribution

The label image is denoted as F"� f
�
�i3S�, where

S"�i�1)i)m� is the set of sites, with i representing the
site (pixel) in the image lattice and m denoting the total
number of pixels. The image F can be a labeled map or
a binary edge map. Each pixel f

�
takes a discrete value

from the label set ¸"�l�1)l)M�, where M denotes
the total number of labels. The spatial relationship of
the sites, each of which is indexed by a single number in S,
is speci"ed by a neighborhood system N"�N

�
�i3S�,

where N
�
signi"es the set consisting of neighboring sites

of pixel i. A single site or a set of neighboring sites forms
a clique denoted by c. The random "eld which satis"es
the following conditions with the neighborhood system
N and the set S is de"ned as an MRF:

(1) Positivity P( f )'0,∀f3F,

(2)Markovianity P( f
�
� f
�����

)"P( f
�
� f
��
),

(1)

where P( ) ) denotes the probability function, S!�i� rep-
resents the set formulated by sites except for site i, and
f
��

signi"es the label set of the neighborhood system at
site i. Thus local interaction between neighboring pixels
is described by the neighborhood system.
According to the Hammersley}Cli!ord theorem, the

MRF follows the Gibbs probability distribution [10].
The joint probability of the MRF can be obtained from
the energy function of the Gibbs distribution.
The Gibbs distribution P( f ) is de"ned by the energy

function ;( f ):

P( f )"
1

Z
exp�!

1

¹

;( f )�, (2)

where ¹ represents the temperature constant, Z is a nor-
malization constant given by

Z" �
���

exp�!

1

¹

;( f )� (3)

with F denoting the label set, and ;( f ) is the energy
function de"ned by the sum of the potential function
<

�
( f ) of the clique c:

;( f )"�
���

<
�
( f ) (4)

with C representing the clique set consisting of all pos-
sible cliques.
The MAP estimator with the Gibbs distribution is

optimized by estimating the conditional probability func-
tion based on the MRF modeling of the image.

2.2. Optimization of the MAP estimator

An estimator is required to be e$cient (deterministic
and preferably should make the maximum improvement
at each iteration step), predictable (results depending on
the inputs and the a priori distribution but not on other
parameters), and robust. The highest con"dence "rst
(HCF) method [10] satis"es these requirements. It is not
a stochastic method like simulated annealing, but a de-
terministic one such as iterative conditional modes
(ICM) [9] estimation. Both HCF and ICM approaches
require some initial con"guration. At each iteration
through the image sites, the state of each site is either
changed to the state that yields the maximal decrease of
the energy function, or left unchanged otherwise.
In the HCF algorithm, all sites are initially labeled as

uncommitted, instead of starting with some speci"c or
arbitrary labels as in most conventional optimization
methods. Uncommitted sites do not participate in com-
putation of the energy of the "eld, nor, therefore, do they
actively in#uence the commitments of their neighbors.
However, an uncommitted site always takes into account
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the states of the active neighbors when making a commit-
ment. For each site, a stability measure is computed. The
less stable the state of the site, the more con"dence we
have in changing its label. In each iteration, the site with
the minimum stability measure is selected, and this label
is changed to the one that yields the lowest energy, which
in turn makes the stability of neighboring sites change.
A commitment to assume a label is not a commitment to
a "xed label: the label of a committed site will be altered
if its neighbors yield a large variance. The process is
repeated until no changes in the labeling process result in
decrease of the energy function, at which point the energy
is the minimum and the algorithm terminates.
The a posteriori knowledge for the labeling is represented

by a Gibbs distribution [10,11]. The a posteriori probabil-
ity of a labeling f in the clique set C is expressed as

P( f �O)"
1

Z
exp�!

1

¹��
���

<
�
( f )!¹ �

���

ln[P(O
�
� f
�
)]��,

(5)

where O denotes the observation which represents the
pixel value of each image and <

�
( f ) is the potential

function which guarantees the continuity of the neigh-
borhood system con"guration. The subscript i denotes
the quantity de"ned at site i.
Initially, the HCF sets the labels at all sites to the null

(uncommitted) label (`l
�
a). The basic idea of the HCF is

to construct the con"guration that yields a local min-
imum energy measure ;( f ).
The a posteriori energy function E

�
( f ) at site i is de-

"ned as

E
�
( f )"�

���

<�
�
(l)!¹ ln[P(O

�
� f
�
)], (6)

where <�
�
(l) is given by

<�
�
(l)"�

0 for l"for l"l
�
,

<
�
(l) otherwise.

(7)

The a posteriori energy corresponds to the con"dence
measure of the label that yields the current con"guration
of the neighborhood system. The null-labeled site does
not have active in#uence on the current con"guration
of the neighborhood system, however it is considered
in labeling of its neighboring sites.
To construct the minimum energy con"guration, the

label of the least stable site is "rst updated. The stability
measure G

�
( f ) at site i is de"ned as follows:

G
�
( f )"�

min
��	����

�

�E
�
(k, f

�
) if f

�
3¸,

! min
��	���


�E
�
(k, j) if f

�
"l

�
,

(8)

where �E
�
(a, b)"E

�
(a)!E

�
(b) and E

�
( j)"min

��	
E
�
(k)

with j3¸.

This stability measure is a combined measure of the
observations and the a priori knowledge about the cur-
rent state. A negative value of G indicates that a more
stable con"guration can be obtained by a label update.
In Eq. (8), the null-labeled site has the negative G. The
magnitude of G corresponds to the incremental gain or
loss of the energy due to a label change: the large negative
value of G represents the high possibility of a label
change. The HCF can be implemented serially with
a heap, maintaining the visiting order of the construction
according to the values of G, the top of which denotes the
site with the smallest G value. The HCF updates the least
stable (the minimum G-valued) site i, adjusts the heap
structure, and updates the stability of the neighborhood
system of site i. The iterative procedure is terminated
when G values at all sites are positive (all sites are
stabilized). The label update is to change the label such
that

l"�
min

�

�E
�
(l, f

�
) if f

�
3¸,

min
�

E
�
(l) if f

�
"l

�
.

(9)

The stability measure of the updated site becomes
positive, and the label update has in#uence on the con"g-
uration of the neighborhood system.

3. Segmentation based on fusion of range and intensity
images

This section describes extraction of the edge informa-
tion based on the �-trimmed variance and surface
parameters extracted from intensity and range images,
respectively. Then the formulation of likelihood func-
tions based on the edge information and MAP estima-
tion for image segmentation are presented.

3.1. Feature extraction

3.1.1. Feature extraction in intensity images
The intensity image provides the edge information of

3D objects, such as the discontinuities of the objects (step
edges) and surfaces (roof edges). Also the shadow and
re#ectance discontinuities of the objects are represented
by the shadow and albedo edges. The step and roof edges
are important features in 3D object recognition, whereas
the shadow and albedo edges may impair the recognition
performance. This paper adopts the binary label set L
consisting of two labels (`edgea and `non-edgea).
To detect the edge features, the gradient method has

been commonly used [12]. But it is di$cult to detect
a reliable edge map by the gradient method in noisy
images because of the sensitivity of the gradient opera-
tion to noise. In this paper, the intensity variance at each
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pixel is used to detect discontinuous regions. For Gaus-
sian noise cases, the intensity variance is large near dis-
continuous regions whereas small in homogeneous
regions if the image is corrupted by Gaussian noise. But
for impulse noise cases, the variance is large, independent
of the discontinuity. The �-trimmed variance based on
the � trimming method [13] is robust to impulse noise, in
which outliers are excluded in variance computation:

���"

1

(1!2�)n
������

�
�	��

(I!IM )�
� � �

, (10)

where n represents the total number of pixels considered
and � denotes a constant value between 0 and 0.5,
specifying the ratio of the number of data used in vari-
ance computation to the total number of data n. The
�-trimmed mean IM is de"ned as

IM "
1

(1!2�)n
������

�
�	��

I
� � �

, (11)

where I
� � �

)I
� � �

)2)I
� � �

are the ordered inten-
sities and (I!IM )�

� � �
)(I!IM )�

� � �
)2)(I!IM )�

� � �
are

the ordered squared errors. The small � yields the �-
trimmed variance sensitive to noise, whereas the large �
gives an inaccurate variance estimate due to the small
number of data involved in variance computation. To
extract the edge information from intensity images, the
�-trimmed variance is used in this paper.

3.1.2. Feature extraction in range images
Roof edges detected using the Laplacian operation are

not accurate for noisy range images. In this paper, objects
are assumed to consist of a number of planar patches,
where three parameters a, b, and c are required to repres-
ent each planar patch z(x, y):

z"ax#by#c. (12)

For faithful representation of a curved surface, more than
one planar patch is used, where the accuracy of repres-
entation and the number of planar surfaces used depend
on the tolerable approximation error. The surface para-
meters approximating the surface patch provide the
geometric information of the 3D object considered.
Detection of the discontinuity in surface parameter
values yields the roof edges [14]. In this paper, the least
trimmed squares (LTS) method [15] based on the robust
regression is used to estimate the surface parameters.
The LTS method is more e$cient than the least me-

dian squares (LMedS) method. In the former, the para-
meters are estimated by minimizing the non-linear
expression:

min

�
�	�

(r�)
� � �

, (13)

where n denotes the number of data, h represents the
number of data used in parameter estimation, and

(r)�
� � �

)(r)�
� � �

)2)(r)�
� � �

are the ordered squared
errors. Note that the residual error r is de"ned by the
di!erence of the original data and the one reconstructed
by the estimated parameters. In statistics, data that dis-
tort the estimate are referred to as outliers. Robust statis-
tics techniques have been used for parameter estimation
because of their robustness to outliers. As a performance
measure of an estimator, the breakdown point is used,
which is de"ned by the percentage of tolerable outliers.
The desirable robustness property is achieved when h
is approximately equal to n/2, in which the breakdown
point attains 0.5.
The planar surface parameters, with which the objec-

tive function in Eq. (13) is minimized, are estimated pixel
by pixel in an estimation window. Because the LTS
method with a large estimation window regards the cor-
ner points of the object as noise spikes, it is likely to lose
them. In surface parameter estimation, we experimentally
set the window size to 9�9, which yields the proper
estimation performance and edge-preservation. Estima-
tion window size is selected experimentally.
Our new algorithm extracts edge features from the

range image, based on the estimated surface parameters.
If the window contains a complex region consisting of a
number of planar surfaces, the parameters of the largest
surface are obtained. The estimation error computed by
the estimated parameters is large for other small surfaces,
thus the approximation error is large for such estimation
windows containing complex structures. Edge detection
in range images is performed by selecting the pixels
yielding large estimation error, where the squared es-
timation error at pixel (x, y) is de"ned as

��(x, y)"


�

�	�




�


	�


�z(x#i, y#j)!z( (x#i, y#j)��

(14)

with z and z( denoting the depth and the reconstructed
depth, respectively, and a 9�9 window is employed.

3.2. Our new segmentation algorithm

3.2.1. Likelihood functions
It is important to de"ne the e!ective likelihood func-

tion for the MAP estimation using the MRF modeling.
In this paper, the likelihood function is de"ned based on
edge features extracted from intensity and range images.
The label site set consists of `edgea and `non-edgea
labels, where `0a represents the `non-edgea label and `1a
signi"es the `edgea label.
The likelihood functions of the intensity image are

de"ned using the �-trimmed variance. The presence (ab-
sence) of the edges in the intensity image yields a large
(small) �-trimmed variance, so the likelihood functions
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Fig. 1. Flowchart of our new segmentation algorithm based on
fusion of range and intensity images.

are de"ned as

P(O
�
� f"0)"

1

Z
�

exp(!��
��
), (15)

P(O
�
� f"1)"

1

Z
�

exp�!
1

��
��
�, (16)

where Z
�
and Z

�
denote the normalization constants,

and O
�
signi"es the observation of the intensity image.

The likelihood functions of the range image are de"ned
based on the surface parameter values estimated in the
local window. Since our segmentation method is based
on the edge likelihood, the images are segmented even if
the largest surface is not extracted from the range images.
The estimation error is large in edge regions between
di!erent surface patches, whereas it is small in homo-
geneous regions, so the likelihood functions are de"ned
as

P(O
�
� f"0)"

1

Z
�

exp(!��), (17)

P(O
�
� f"1)"

1

Z



exp�!
1

���, (18)

where Z
�
and Z



represent the normalization constants,

and O
�
signi"es the observation of the range image.

In this paper, shadows and albedo edges in intensity
images are neglected because they do not directly give
geometric information. If so, the intensity and range data
are assumed to be statistically independent, which makes
the fused likelihood function P(O� f ) be expressed as the
product of likelihood functions for intensity and range
images:

P(O� f )"P(O
�
� f ) ) P(O

�
� f ), (19)

where O denotes both observations from range and
intensity images. By applying the HCF MAP estimation
in Eqs. (6)}(19), the "nal edge map obtained by fusing
range and intensity images is optimized.

3.2.2. Clique potential function
The potential function guarantees the continuity of

the spatial relationship of edge segments. The optimum
potential function is experimentally selected in most
conventional methods, whereas in this paper the clique
potential function de"ned by

<
�
"!	

�
(1!l

�

)
a

�
!a




�!	

�
l
�


(20)

is employed, where 	
�
and 	

�
are weighting constants,

l
�


"1 for the edge clique de"ned between pixels i and j,
0 for the non-edge clique, c represents the second-order
clique set for i, j3c, and a

�
and a



signify the surface

parameter vectors extracted at sites i and j, respectively.
The potential function is decreased by the amount of
	
�

a

�
!a




� for the non-edge clique and by the amount

of 	
�
for the edge clique. The weight constant 	

�
controls

the smoothness. For example, large 	
�
smoothes adjac-

ent regions and merges them into a single region, whereas
small 	

�
splits a single homogeneous region into multiple

regions. 	
�
is related to the a priori information such as

the ratio of the numbers of edge and non-edge cliques.
Fig. 1 shows the #owchart of our new algorithm. The

fused likelihood function P(O� f ) is de"ned by the likeli-
hood functionsP(O

�
� f ) and P(O

�
� f ) obtained from inten-

sity and range images, respectively. The "nal edge map is
constructed from the fused likelihood function using the
MAP estimation with MRF modeling. Image segmenta-
tion is performed with the "nal edge map.

4. Experimental results

4.1. Test image sets

Fig. 2 shows two sets of test images to show the
performance of our new segmentation algorithm. These
images are 240�240 registered images captured in the
Pattern Recognition and Image Processing (PRIP) Lab.
at Michigan State University. By a camera calibration
algorithm, the range images from a triangulation sensor
were registered with the intensity image obtained from a
separate CCD camera [7].
The original range and intensity images are dense,

except for the shadow regions and for small holes due
to quantization and registration error. Because the
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Fig. 2. Intensity and range images used in experiments: (a) intensity Image A, (b) range ImageA, (c) intensity Image B, (d) range Image B.

conventional methods are not robust to these holes (im-
pulsive noises), the holes are eliminated by preprocessing:
3�3 median "ltering for the intensity image and by the
reconstruction method using the estimated surface para-
meters for the range image.

4.2. Edge detection

To compare our new algorithm with the conventional
ones (Gil et al.'s method [5], Zhang and Wallace's
method [6], and Nadabar and Jain's method [7]), Gaus-
sian noise (�"3.0) and impulse noise (5%) are added to
the test image sets. Three-by-three median "ltering is
applied as a preprocessing to noisy images because the
conventional methods are very sensitive to impulse
noise.
Fig. 3 shows the likelihood functions for Image A mag-

ni"ed by a factor of 200, where edges are represented as
the dark regions (Figs. 3(a), (c), and (e)) and bright regions
(Figs. 3(b), (d), and (f)), respectively. The �-trimmed vari-
ance is calculated in the intensity image using "ve data
values in a 3�3 window (�"0.22), whereas the surface

parameters are estimated in the range image with a 9�9
window. Note that the fused likelihood function in Fig.
3(e) (Fig. 3(f)) shows a desirable combination of Figs. 3(a)
and (c) (Figs. 3(b) and (d)), in the sense that the edge
segments not shown in Fig. 3(a) (Fig. 3(b)) are detected
in Fig. 3(c) (Fig. 3(d)), resulting in "nal edge segments in
Fig. 3(e) (Fig. 3(f)).
Figs. 4 and 5 show the performance comparison of the

conventional and our new segmentation methods. Figs.
4(a) and 5(a) show the edge maps obtained by Gil et al.'s
method. The edge in the intensity image is detected by the
Kirsch operator, whereas the edge in the range image is
extracted by detecting the discontinuities of the normal
vector's direction, where the normal vector represents
the direction normal to the surface reconstructed by the
estimated surface parameters. Since the range edge is
very sensitive to noise, some roof edges may not be
detected and the noisy false edges may be detected. Figs.
4(b) and 5(b) show the edge maps detected by the Zhang
andWallace method, whereas Figs. 4(c) and 5(c) show the
edge maps generated by the Nadabar and Jain method.
The performance of the conventional methods is some-

1956 I.S. Chang, R.-H. Park / Pattern Recognition 34 (2001) 1951}1962



Fig. 3. Likelihood functions for Image A with Gaussian noise (�"3.0) and impulse noise (5%): (a) P(O
�
� f"0) (intensity image),

(b) P(O
�
� f"1) (intensity image), (c) P(O

�
� f"0) (range image), (d) P(O

�
� f"1) (range image), (e) P(O� f"0) (fused), (f) P(O� f"1) (fused).

what poor for the non-Gaussian noise case, because these
methods are not robust to impulse noise. Figs. 4(d) and
5(d) show the edge maps obtained by our new algorithm.
In experiments, 	

�
"15.0 and 	

�
"20.0 are used, where

these values are experimentally selected. As shown in
Figs. 4(d) and 5(d), the false edges are eliminated by our

new method, however the corner points are somewhat
smoothed because of the inherent limitation of the LTS
estimation. The corner points can be preserved if the
surface parameters are estimated based on the multi-
resolution method [16] which requires high computa-
tional complexity.
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Fig. 4. Performance comparison of edge detection methods for Image A with Gaussian noise (�"3.0) and impulse noise (5%). (a) the
Gil et al. method, (b) the Zhang and Wallace method, (c) the Nadabar and Jain method, (d) our new method.

On MIPS-5000 workstation, the Gil et al. method,
Zhang and Wallace method, The Nadabar and Jain
method, and our new method take about 20 s, 6, 8 and
15min, respectively. It takes about 10min to estimate
surface parameters by the LTS method, thus further
research will focus on the development of the fast surface
parameter estimation algorithm.

4.3. Segmentation results

Figs. 6(a) and (b) show the segmentation results based
on the "nal edge maps shown in Figs. 4(d) and 5(d),
respectively. The test images are corrupted by Gaussian
(�"3.0)/impulse (5%) noise mixture. As shown in Fig. 6,
the image is segmented into a number of planar surfaces
and curved surfaces. Although some "tting error appears
large in the curved surface which is approximated by the
"rst-order planar surface model, fusion of the range and
intensity edge information reduces the error e!ect in the
curved surface.

Figs. 7 and 8 show the segmentation performance, in
terms of the number of incorrectly segmented pixels, as
a function of Gaussian and impulse noise level for Images
A and B, respectively. Gaussian and impulse noise inde-
pendently corrupt the range and intensity images.
Amount of Gaussian noise is represented by the standard
deviation � of the Gaussian function and that of impulse
noise is expressed by the noise ratio percentage (%), in
which the noise ratio is de"ned by the ratio of the number
of contaminated pixels to the total number of pixels in
an image. The segmentation performance is represented
by the number of incorrectly segmented pixels, where
total numbers of pixels considered are 15,984 and 9381
for Images A and B, respectively. The edge pixels are not
considered in computing the segmentation performance
because they are merged to neighboring regions. In Figs.
7 and 8, &miss' represents the number of pixels in undetec-
ted regions, &under-segmentation' signi"es the number of
pixels in under-segmented regions, and &over-segmenta-
tion' denotes the number of pixels in over-segmented
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Fig. 5. Performance comparison of edge detection methods for Image B with Gaussian noise (�"3.0) and impulse noise (5%): (a) the
Gil et al. method, (b) the Zhang and Wallace method, (c) the Nadabar and Jain method, (d) our new method.

Fig. 6. Segmentation results of our new method (with Gaussian noise (�"3.0) and impulse noise (5%)): (a) Image A, (b) Image B.

regions. As shown in Figs. 7 and 8, the segmentation
performance for Gaussian noise cases is lower than that
for impulse noise cases because the trimmed methods

(�-trimmed method and LTS method) are robust to im-
pulse noise. Since the step edge pixels contaminated by
Gaussian or impulse noise may not be detected, there are
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Fig. 7. Segmentation performance of our new method for Image A (total number of pixels considered: 15984): (a) Gaussian noise,
(b) impulse noise.

more &under-segmentation' pixels than &over-segmenta-
tion' pixels in Images A and B. Also Figs. 7 and 8 show
that the large number of step edge pixels yields the
&under-segmentation': 567 and 774 in Images A and B,
respectively.

5. Conclusions

This paper presents the segmentation algorithm based
on fusion of range and intensity images using robust
trimmedmethods. Fusing the edge information extracted

from both images, the MAP estimator is implemented
based on the MRF modeling. The likelihood functions of
the intensity image are based on the statistical �-trimmed
variance, whereas those of the range image are based on
the surface parameters estimated based on the LTS
method.
Simulation with various test image sets shows that

segmentation results of our new algorithm are robust to
Gaussian/impulse mixture noise. Future research will
focus on the development of the fast parameter estima-
tion algorithm and on the extension of the algorithm to
higher-order surface cases.
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Fig. 8. Segmentation performance of our new method for Image B (total number of pixels considered: 9381): (a) Gaussian noise,
(b) impulse noise.
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