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Abstract 

We are considering the problem of recovering the 
three-dimensional geometry of a scene from binocu- 
lor stereo disparity. Once a dense disparity map has 
been computed from a stereo pair of images, one of- 
ten needs to calculate some local diferential proper- 
ties of the cowesponding 3 - 0  surface such as orien- 
tation or curvatures. The wual approach is to build 
a 3 - 0  reconstruction of the surface(s) from which all 
shape properties will then be derived without ever go-  
ing back to the original images. In this paper, we de- 
part from this paradigm and propose to w e  the images 
directly to  compute the shape properties. We thus pro- 
pose a new method extending the classical cowelation 
method to estimate accurately both the disparity and 
its derivatives directly from the image data. We then 
relate those derivatives to diferential properties of the 
surface such as orientation and curvatures. 

1 Introduction 

1.1 Motivation 

Three-dimensional shape analysis in computer vi- 
sion has often been considered as a two step process 
in which a) the structure of the scene is first recovered 
as a set of coordinates of 3-D points and b) models 
are fitted to  this data in order to  recover higher-order 
shape properties such as normals or curvatures which 
are first and second order differential properties of the 
shape surface. The original images are not used any- 
more whereas this is clearly where the information lies. 

consequence, we are confronted to  the task of estimat- 
ing the spatial derivatives of the disparity map and we 
explore the possibility of estimating these derivatives 
directly from the images rather than applying to the 
disparity map the same paradigm as to  the 3-D shape. 

1.2 Related Work 

We very briefly review the work that has been done 
in interpreting stereo disparity. Up till now the major 
part of the existing studies is on the interpolation or 
approximation of the possibly sparse disparity map by 
a surface. This was done using either minimization of 
spline functions [ l ,  121, or interpolation by polynomial 
surface patches [8]. For both methods, surface orien- 
tation and the presence of surface discontinuities can 
be detected and taken into account. To calculate the 
orientation of the observed surface, another approach 
was to simply differentiate numerically the point-by- 
point distance reconstruction (21. 

Theoretical results were also obtained for the cal- 
culation of surface orientation by studying the local 
projections of a surface and the displacement vector 
field generated by movement (i.e. the optical flow) [lo], 
or the disparity field in the case of stereoscopy [9]. A 
result that is closer to  the approach presented here is 
the calculation of the three-dimensional surface orien- 
tation from the disparity field and its first derivatives 
[13], but, as we show in this article, it can be done 
much more simply, thus allowing to  reach the second 
order derivatives, i.e. curvatures. A method similar to 
ours was also applied to  estimation of traversability 
for robot motion planning [ll]. 

In some applications one may want to use even 
higher order properties such as &ne or projective dif- 
ferential invariants, that would be especially useful in 
the situation of an uncalibrated stereo rig [5]. All these 
quantities can be expressed, using the perspective pro- 
jection matrices of the two cameras (or the fundamen- 
tal matrix in the case of an uncalibrated system), in 
terms of the derivatives of the disparity field. As a 

1.3 Contributions 

If we want to  calculate the local differential prop- 
erties of a 3-D surface, we can go at  least two ways; 
first, we can reconstruct the scene points in three di- 
mensions, fit some surface to  the reconstructed points 
and compute the differential properties from the fitted 
surfaces. A second possibility is to avoid the explicit 
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reconstruction and work directly from the disparity 
map. Because of the computational effort involved in 
the first approach, we choose here the second one. 

We thus first have to compute the derivatives of 
the disparity. Since the precision of the dense dispar- 
ity map calculated by a standard correlation technique 
is only about one pixel, we must either regularize the 
disparity map or compute its derivatives differently. 
The first solution implies the use of Iocd regulariza- 
tion techniques, because we must keep in mind that 
the disparity map may contain holes due for example 
to object discontinuities or occluding contours. We 
chose to explore a second solution and present a new 
method to compute precise values of the disparity and 
its derivatives, up to second derivatives, directly from 
the image intensity data, i.e. without using explicitly 
any derivation operator. 

We then present a method to compute the three- 
dimensional surface orientation from the first-order 
derivatives of the disparity. The analytic expressions 
are very simple when working in standard coordinates 
(i.e. when the images are rectified so that epipolar 
lines are horizontal). We also extend this to the com- 
putation of surface curvature from the second-order 
derivatives of the disparity, but the resulting expres- 
sions are less simple. 

We tested our algorithms on real images success- 
fully, and the results are presented at  the end of this 
paper. 

Our method can be easily extended to the case of 
an uncalibrated stereo rig [5], but in that case we will 
need to use projective differential invariants instead 
of Euclidean invariants. The use of weak calibration 
seems to be a very promising and still mostly unex- 
plored field of research. 

2 Computing derivatives of disparity 

If we want to know the local surface orientation and 
curvatures from a stereoscopic pair of images, we have 
to calculate somehow the derivatives with respect to 
the image coordinates of the disparity map of a 3-D 
surface. Two problems arise if we try to differentiate 
the disparity map: first, because the classical corre- 
lation algorithms give the disparity at a precision of 
about one pixel, there is noise in the disparity map, 
and second, the disparity map may contain holes be- 
cause of occluded regions or points where the correla- 
tion failed (Figure 5). One solution is to use a deriving 
operator with a finite support that would regularize 
the data, like the one we present below. 

We also present another method that uses directly 

the image intensity data to compute the derivatives 
without any kind of derivation. Using this method 
gives more accurate results, but a t  a much higher com- 
putational cost. 

2.1 From the disparity map 

AS we pointed out, if we want to.use the disparity 
map itself to calculate its derivatives we have to per- 
form some local regularization that can handle holes in 
the disparity map. We chose to do a local least square 
approximation of the disparity data by a model, and 
then recover the derivatives from the coefficients of the 
fitted model. 

To calculate the first derivatives of disparity, we fit 
a plane model on the data located in a rectangular 
window centered at the considered point [3]. Then 
we consider we can trust the result if both the x2 of 
the approximation is under a fixed threshold and the 
derivatives of disparity verify the ordering constraint 
[SI. This last condition can also be replaced by the 
disparity gradient limit. 

A perhaps better method to compute these deriva- 
tives from the disparity map can be found in [8], but 
the quality of the results will still depend on the preci- 
sion of the disparity map, which is the crucial problem. 

2.2 An enhanced correlation method 

We thought that instead of trying to look for the 
derivatives in the disparity map, where they may be 
definitively lost because of noise or correlation errors, 
why not look for these directly in the image intensity 
data?' The idea comes from the following observation: 
a small surface element that is viewed as a square of 
pixels in the left image can be seen in the right image 
as a distorted square, and an approximation of this 
distorted square can be computed from the derivatives 
of the disparity. 

Let us call d(u,v) the disparity at point (u ,v) ,  
that is to say that the point in the right image cor- 
responding to (u,v) is (U + d,v). Let a and p be 
the derivatives of d with respect t o  U and U, respec- 
tively. Then the point corresponding to ( u + ~ u ,  v+dv) 
is (U + d + (1 + a)du + Pdv + o(du + dv),w + dv). 
This means that the region corresponding to a small 
square centered at ( U ,  v) in the left image is a sheared 
and slanted rectangle centered at  (U + d,v) in the 

'In this subsection we work in standard coordinates, i.e. the 
original images are rectified IO that the epipolar l ina are horizontal 
and consequently the disparity between the Idt and right images 
is only horizontal (Figure 3). The reference image used for the 
computation of disparity is the left image. 
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Fig. 1.: How a small square region in the left image is trans- 
formed in the right image: first (top) and second (bottom) 
order approximations of the deformation. 

(SI 

Fig. 2.: The stereoscopic system and the epipolar geometry 

right image (Figure 1). We can use the same scheme 
to compute a higher order approximation of the de- 
formation that operates on a square region in the 
left image. We obtain the point corresponding to  
(U + du,v + dv) by calculating the Taylor series ex- 
pansion of (u,o) -+ (U + d(u,v),v) up to  order n. An 
example of such a deformation is shown in Figure 1 
for n = 2. 
Now that we know how an element of surface of 

the left image is deformed in the right image given the 
derivatives of disparity, we can inversely try do guess 
the derivatives of the disparity as the parameters of 
the deformed element which maximize the correlation 
between both regions. For example to  calculate the 
first derivatives of the disparity we simply have to cal- 
culate the values of d, a, and fl that  maximize the 
correlation between the square region in the left im- 
age and the slanted and sheared region in the right 
image. To calculate the correlation between both re- 
gions, that are of different shape, we just do an in- 
terpolation between the intensity values of the right 
image, at the positions corresponding to  the centers 
of the pixels of the deformed left image, and then we 
calculate the correlation criterion as a finite sum, as 
we do in classical correlation techniques. 

Then, to find the values of the disparity and its 
derivatives that maximize the correlation, we calculate 
a dense disparity map by a standard correlation tech- 

nique, that is used as the first component of the ini- 
tialization vector for a classical minimization method. 
The other components, which are the derivatives of 
disparity, are initialized at 0, and a claasical minimiza- 
tion method finds the best values for the disparity 
and its first and second derivatives. We finally get 
six maps: one for the disparity itself, two for its first 
derivatives, and three for its second derivatives. 

3 From derivatives of disparity to 3-D 
differential properties 

Let us consider a pair of calibrated cameras, i.e. 
we know the projection matrices P and Q associated 
respectively to the first and the second camera. From 
P and Q we can compute the optical centers Cl and C2 

(Figure 2 )  and their epipoles E1 and E2 (the epipoles 
correspond to the projection in each camera of the 
optical center of the other camera). 

A 3-D surface (S) is projected on both cameras and 
we want to calculate the orientation and the curvature 
of the surface in each point. We first study the generic 
case where the cameras are in a general position, and 
then we will restrict ourselves to  the case of standard 
geometry which simplifies the calculations. 

3.1 Cameras in generic position 

Let GI and 82 be the vectors in homogeneous coor- 
dinates representing the two epipoles, a1 and bl be two 
points of the first camera not aligned with El, and a2 
and b2 be two points of the second camera not aligned 
with E2 (the points a1 and bl do not have to  match 
a2 and b). Let M be a physical point belonging to 
the observed surface (S), whose projections on the two 
cameras are ml and m2. The corresponding vectors in 
homogeneous coordinates m 1  and m a  can be written 
as linear combinations otthe other points in each cam- 
era, m1 = A161+&+p1b1 and 152 = A282+52+p2b2. 

The epipolar constraint is xTiTFml = 0, where F 
is the fundamental matrix [7] corresponding to  the 
stereoscopic system. Since FBI = FT82 = 0, it can 
be rewritten (52 + ~ 2 6 2 )  F(51 + ~161) = 0, so there 
exists a homographic relationship between p1 and p2: 

T 

Moreover, by matching the points of both images 
we obtain the dense disparity map f: 
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Fig. 3.: A configuration corresponding to standard geome- 
try. The vectors tx and t,, tangents to (S) at M, m r e -  
spond to small displacements of the image point. 

Since matrices P and Q are known, we also have the 
reconstruction formula (which is developed later in the 
case of standard geometry), M = r(Xl,pI,X2,p2). 

Surface orientation: To calculate the surface ori- 
entation we just have to differentiate once the recon- 
struction formula and substitute the values of dX2 and 
dpa found by differentiation of equations 1 and 2: 

dM = txdA1 + t,dpl (3) 

8x1 BA, 8x1 ’ t p  ap1 ax, ap1 (cp1 + d)2 G 
ar ar af 8r Br Bf + ad-bc at tA=-+-- =--+-- 

Consequently, the tangent plane to the surface (S) 
at point M is the vector space generated by the two 
vectors t A  and t,. 
Surface curvature: Knowing the local surface cur- 
vature may be more useful than the surface orienta- 
tion, so we continued our computation to get the sur- 
face curvature from the first and second derivatives 
of disparity. The method consists of differentiating 
twice the reconstruction formula, and then comput- 
ing the second order properties of the surface such as 
principal directions and curvatures from this equation. 
More details can be found in (31. 

3.2 In standard geometry 

Standard geometry [6) consists of rectifying the im- 
ages so that the epipolar lines are horizontal (Fig- 
ure 3). The preceding calculations can be simpli- 
fied a lot because the epipoles are at infinity, 51 = 
6 2  = (1,0, O ) T ,  and the epipolar constraint is simply 
p1 = p2. Besides we can choose 61 = 4 = ( O , O ,  1) 
and 61 = 1;2 = (0,1, O ) T ,  i.e. & and & correspond to 
the horizontal and the vertical direction in each image. 

T 

3-D reconstruction: In standard geometry the 
projection matrices associated to each camera have 

only a few differences: 

fi= [ PT p; Pl4 m 4 ] , a =  [ 8 z : ]  
P3 P34 P3 P34 

By writing that points ml = (u1,q) and m2 = 
(u2,vl) (Figure 3) are the projections of the same 
3-D point, we obtain the reconstruction formula, 
r(u1,q,u2) = A-lB, with: 

A =  [ P T - W P ~ ]  ,B= ( ~ t 4 4 - ~ 2 4  ) (4) 
PT - ulP3 ulB4 - -4 

ST - uzPT %p34 - 914 

We also need the Jacobian matrix Jr, whose 
columns are the partial derivatives of r with respect 
to u1, V I  and 162, to calculate surface orientation, and 
the differential of the Jacobian to calculate the surface 
curvatures: 

Jr = ((pTp34)F) A-’ ( 5 )  

dJr = (pad.) A-’ - A-ldAJr (6) 

Surface orientation: 
standard geometry: 

The equation 3 becomes in 

so that the tangent vectors can the be written t A  = 

Jr ( l , O ,  z)T and t, = Jr (0,2, z)T, and the ori- 
entation of the surface is given either by tx x t, if the 
image frame is direct, or by t, x t x  if the image frame 
is indirect (Figure 3). 
Surface curvature: The expression of d2M we ob- 
tain in the generic case can be simplified in t.he case of 
standard geometry. More details can be found in [3]. 

4 Results 

We present here some results that we obtained us- 
ing the different techniques described in this paper. 
The stereoscopic system we used consists of a pair of 
CCD cameras with 16“ lenses (we use a big focal 
length because we want minimum distortion). The 
image resolution is 512 x 512, and the subject of our 
stereograms were several textured objects represent- 
ing moulds of human faces, human torsos, vases, and 
real faces (Figure 4). The system was calibrated using 
weak calibration [7] for stereo and a calibration grid 
for reconstruction. 
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disparity obtained by correlation (right). 

~ = I A  Fig. 4.: Two sampk cross-eyed stereograms. 

Fig. 7.: The second derivatives of the disparity: % (left), 
& (center), and % (right). 

strange phenomenon occur in the images of the second 
derivatives of disparity. 

In fact, there seem to be horizontal stripes all over 
the image of the second derivative with respect to y, 
and their amplitude and frequency decrease when the 

Fig. 5.: The disparity field obtained by standard correlation 
(left) and the first derivatives computed by plane fitting 
(right). 

4.1 The disparity and its derivatives 

The first step for the estimation of differential p r o p  
erties of 3-D surfaces is to calculate a dense disparity 
map from the considered pair of images and its deriva- 
tives, up to the order we need. We present here some 
results for the two methods presented in this paper 
and compare them. 
By plane Atting: Some results of the application a 
standard correlation method followed by plane fitting 
are shown in figure 5. The contrast was augmented 
so that we can see the main defect of this method: 
some bumps appear all over the surface due to the 
noise that was present in the original disparity data. 
They can disappear if we increase the size of the re- 
gion used for fitting, but we will lose precision and 
localization of surface features. A solution would be 
to fit a higher degree model or do some regularization 
before processing the data. 
By correlation: This method gives better results, 
at the price of a higher computational cost. The most 
remarkable one is the new disparity map, which is a 
lot more precise because we take into account the local 
image deformations. The first derivatives of disparity 
seem to be also accurate, especially when compared to 
those obtained by plane fitting (Figure S), but some 

size of the correlation window increases, so that it 
must come from some kind of noise (Figure 7). Since 
this appears only in this image, this must be the con- 
sequence of the synchronization error at the beginning 
of each video line. After verification, the amplitude of 
the waves correspond to the pixel jitter value given 
in the technical data of the acquisition system, which 
can be up to 0.5 pixel. 

4.2 3-D reconstruction and orientation 

We compared the 3D reconstruction obtained from 
two different dense disparity maps: one obtained by 
a standard correlation algorithm, and one refined by 
our enhanced correlation method. The result of our 
method is by far better than the other one, as can 
be seen in Figure 8 which represents a close view of 
a 100 x 100 region of the face stereogram, where the 
amplitude of the variation of disparity is less than 10 

Fig. 8.: Reconstruction of the no& from the pair of Figure 4: 
using standard correlation (left), using enhanced correlation 
(center), and the field of normals (right) 
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Fig. 9.: The face reconstruction with intensity mapping and 
the bust reconstruction, both using enhanced correlation. 

Fig. lO.:--lmages of the Gaussian (left) and mean (right) 
curvatures 
pixels. We also show a subsampling of the field of 
normals that waa obtained together with the disparity 
map. The whole face is represented in Figure 9. 

This is not an easy cave (the surface is only slightly 
textured), so we can hope that our correlation tech- 
nique will work on many kinds of 3D surfaces. Using it 
with first order approximation of the local image dis- 
tortion is enough to get both a precise reconstruction 
and the field of normah, and it is much faster than 
with the second order approximation. 

We also calculated the: Gaussian and the mean cur- 
vatures of the torso stereogram (Figure 10). The prob- 
lem is that the stripes that appeared in the second 
derivative of the disparity over y are still present, so 
that there is some error in the curvature maps. 

5 Conclusion 

We have described a method to compute the differ- 
ential properties of 3-D shapes, such as surface orien- 
tation or curvature, from stereo pairs. The advances 
are both theoretical and practical: we first have shown 
how the 3-D differential properties are related to the 
derivatives of the disparity map, and second we have 
described a new method to  compute these derivatives 
directly from the image intensity data by correlation. 

This enhanced correlation method is more accurate 
than classical methods but slower, so that we may 
want to use it only locally (e.g. for a better inter- 

pretation of regions of interest). The second order 
derivatives of the disparity computed by this method 
are nonetheless not aa stable as we may wish, and a 
good solution may be a hybrid method using both the 
image intensity and the 3-D reconstruction. 

The next step of our work is to use the enhanced 
correlation method on non-rectified images, using the 
epipolar constraint, in order to get rid of the noise 
caused by the rectification. We also have to eliminate 
the holes that may be present in the original disparity 
map, because this one is used as an initialization of our 
process. We also plan to make the calculations in the 
case of weak calibration, and to compute higher-order 
properties such as affine or projective curvature. This 
can be applied to feature detection and recognition, or 
it can be used to find regions of interest in an active 
vision approach. 
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