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A Phase-Based Approach to the Estimation of the
Optical Flow Field Using Spatial Filtering

Temujin Gautama and Marc M. Van Hull8enior Member, IEEE

Abstract—in this paper, we introduce a new technique for al.[9], [19] used more complex synthetic image sequences, for
estimating the optical flow field, starting from image sequences. which the ground truth motion fields are available. Six out of
As suggested by Fleet and Jepson, we track contours of constantyne gight techniques that have been examined in this study, have
phase over time, since these are more robust to variations in 0 b d by Barr@tal. but leavi tth d
lighting conditions and deviations from pure translation than alSo been used by barr@al, but leaving outthe energy- an
contours of constant amplitude. Our phase-based approach Phase-based methods. Galeiral.concluded that the technique
proceeds in three stages. First, the image sequence is spatiallydeveloped by Lucas and Kanade [18] yields the best results.
filtered using a bank of quadrature pairs of Gabor filters, and Fleet and Jepson showed that the temporal evolution of con-
the temporal phase gradient is computed, yielding estimates 15 of constant phase provides a better approximation to the
of the velocity component in directions orthogonal to the filter local velocity than do contours of constant amplitude [5]—[7]
pairs’ orientations. Second, a component velocity is rejected if the y P ’
corresponding filter pair's phase information is not linear over [15]. They demonstrated that phase contours are more robust
a given time span. Third, the remaining component velocities at with respectto smooth shading and lighting variations, and more
a single spatial location are combined and a recurrent neural stable with respect to small deviations from image translations.
network is used to derive the full velocity. We test our approach They suggested tracking the constant phase contours by com-
on several image sequences, both synthetic and realistic. - . - .

_ puting the phase gradient of (spatiotemporally) bandpassed im-

Index Terms—Aperture problem, optical flow, phase-based, re- ages. They further showed that phase information can become
current neural network. unstable in the vicinity of phase singularities and have proposed

a straightforward constraint that should be satisfied in order for
|. INTRODUCTION the phase information to be reliable for the subsequent estima-
. tion of the two-dimensional (2-D) velocity.
the sh d struct £ obiect ved i 9 We introduce a new phase-based approach to the estimation
€ Shape and SrUcture of objects perceived In our ek y,q optical flow field, which is based on spatially filtering
ronment. Therefore, accurate techniques for estimating the & images using a bank of quadrature pair filters, and not spa-

locity ﬁ(.ek.j (optica] ﬂoyv field) are indispensable components. iotemporally as has been done by Fleet and Jepson [5]. This
many vision applications. Horn and Schunck [14] were the fir ﬁtlows for the measurement of ph linearity, rather than
to develop a technique based on computing spatiotemporal djf- '

ferences from image sequences, which has spurred the deve

ment of a wide range of techniques and approaches for Optiaﬁadrature filter pair yields an estimate of the component of the

flovxi fletlddes_nma(;q;n. Intat rer\]/lgw paper, Barrceatn ?l' [1f]' [3] . velocity in the direction orthogonal to the filter pair’s spatial ori-
eévaluated niné ditterent techniques, representative 1or Varoys io several such component velocities from a single spa-

approaches, namely the differential, matching, energy-baSﬁ t location are combined, and the 2-D velocity is found using

and phase-basec_j ones. They have tested thes_e algorlthm {turrent neural network. We test our technique on the image
several standard image sequences, both synthetic, for Wh|ch§ u

S i 8 ences used by Barrenal. [1], [3] and Galvinet al. [9],
ground truthmotion fields are known, and realistic ones, fo 19], such that results can be compared. Finally, we examine
which the desired motion fields are not known and only qualit he i'nfluence of the free parameters that need to E)e chosen. and
tive comparisons can be made. One of their conclusions was technique’s sensitivity to noise. '
the phase-based technique of Fleet and Jepson [5] and the differ-
ential technique of Lucas and Kanade [18] produced the more
accurate results overall. In another comparative study, Gatvin

stability, on the basis of which a confidence measure can be
ined that can be used to reject unreliable estimates. Every

Il. SYSTEM ARCHITECTURE

We estimate the optical flow field of an image sequence in
three stages. First, we process the image sequence by spatially
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A. Component Velocity

We represent an image sequence by means of the outputs of
a set of spatial filter pairs at every frameWe use quadrature
Gabor filter pairs, which are characterized by their center fre-
quencies(f., f,), and the width of the enveloping (spatial) ra-

Phase error
8

8

dially symmetric Gaussiam, We use filters with constant band- 451
widths of 3 octaves, measured at one standard deviation in the
frequency domain, which results in a spatial width of 0/60135-90 45 0 45 90 135180
90 +1 Actual ¢,
o= .
(2,@ _ 1)27r /f2 + f2 Fig. 1. Phase error, i.e., the absolute value of the error made on the phase gra-
* v dient (median values with upper and lower quartiles, taken over a batch of 100

The output of a quadrature Gabor filter pair is Comp|ex_va|uea'[nulations per phase gradient) for the case of transléting) uniform noise.
and we denote the phase component of the outpyfi(iyt).

Fleet and Jepson [5] have shown that the temporal evolutigi180° for the given filter pair. For noninteger speeds, we round
of contours of constant phase provides a good approximatiorotd the displacement with respect to the first frame toward the
the motion field. Pointk on such a contour satisfy(x,¢) = ¢, nearestinteger. For each of the 26 speeds, we have run 100 sim-
wherec is a constant, which, after differentiating with respeatlations with different random noise patterns. Fig. 1 shows the
to ¢, yields absolute value of the error on the phase gradient (“phase error;”

. . . median values with upper and lower quartiles). A breakdown

Vo) - Vx = Vx,1) - (v,1) = (¢, o) - (v, 1) =0 in performance is observed for speeds corresponding beyond
whereV¢(x,t) is the temporal phase gradient vector an$  the[—150°, 150°] range which is due to the phase wrap-around
the full 2-D velocity. This allows us to write the temporal phasgsimilar breakdowns are observed for quadrature pairs that are

gradient as tuned to different frequencies). Indeed, there is a region near
by = —(v - ) ¢, = £180°, where the phase gradient does not yield stable

i N results: small changes in phase can correspond to large spatial

= ~llexll (v - %) displacements due to the phase wrap-around. Furthermore, our

= —||¢x| projg (v) (1) simple phase-unwrapping technique is not suited for large phase

whereg” denotes the normalized version of vectigr. Equa- gradients. In the second stage of our algorithm, these cases will
T 3

tion (1) can be interpreted as a formulation of the weII-knOV\}ﬁe detected by examining the quality of the least-squares regres-
infSion (see further). Since there is a breakdown in performance for

mation about the component of the full velocity in the directioﬂ.hase gradients greater than a certain value, the filter frequen-

of the spatial phase gradiefit. We denote thisomponentre- cies ir_npose an upper bound on the component velocity that can
locity by v.., and compute it as be reliably detected.

Ve = Drojy; (V@) = %(fm ). @) B. Confidence Measure
2 (fw + f'y) Barronet al. [1], [3] have found that the use of confidence

Note that we substitute the spatial phase gradigrity the fre- measures, i.e., a measure for determining the correctness of the
quency vecto(2r f.., 2w f, ) which, strictly speaking, only holds computed velocities, greatly influences the performances of dif-
if the bandwidths of the filters approach zero. ferent optical flow algorithms. In their implementations, they

For every filter pairi, the temporal phase gradient, ;,(x) have used confidence measures as thresholds to retain a subset
is computed from the temporal sequence of its phase coafvalid estimates, although they note that in many applications
ponents by performing a least-squares linear regression alhvelocity estimates can be retained along with their respective
the (¢, ¢)-pairs. We compensate for the phase wrap-arouednfidence values which could, e.g., be used as weights in sub-
by adding or subtractingk - 2n) if |p(x,t + At) — ¢(x,t)| sequent computations.
exceedsr (“phase-unwrapping”). Note that gradients larger In their phase-based approach, Fleet and Jepson [5] origi-
than 7 cannot be accurately estimated this way and lead mally proposed a two-fold constraint on the component velocity
large regression errors. The slope of thep)-regression line estimates, namely one on the local frequency, to ensure that
corresponds to the phase gradiept(x). We have opted to the detected local frequency is within the passband of the
restrict ourselves to this simple method of phase-unwrappirgpatiotemporal filter pair, and one on the local signal amplitude,
and to detect the inaccurate results in a second stage (&eeeject filter pair outputs where no significant power is present
further); for more elaborate phase-unwrapping techniques, imethat frequency region. In subsequent publications [6], [7],
refer to [10], [11], and [20]. [15], they have extended the first constraint by detecting the

We have tested this strategy on @n t)-case for a one-di- “singularity neighborhoods,” i.e., the regions where phase
mensional (1-D) quadrature Gabor filter pair with a wavelengthformation becomes unstable. We have performed a similar
of 12 pixels and a bandwidth gf = 0.6 octaves (the total op- simulation to those described in [6] and [7], [15] to illustrate
erator length is set téoc = 55 pixels). The input consists of this concept and to visualize the singularity neighborhoods
translating uniform noise patterns, the speeds of which ranigea Gabor scale-space framework. Consider a 1-D pattern
from —6 to 6 pixels/frame, corresponding to phase gradients of uniform noise, which is convolved with quadrature Gabor
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Fig. 2. Contour plot of the phase component of the Gabor scale sp . . .
expansion of a uniform noise pattern. The horizontal and vertical axes repregg:,%t d%n t %)r igacs:gsgogflI?rziglt;tirggafs)ﬁﬁig) Smil l;]uorilts:gcg;r;éhgsagit;allgo h?ﬁg
spatial position, and ng of t_h.e scalg (A spans two octaves). The gray areas ian values and upper and Iowér quartiles are plotted. (b) Scatt.er [ﬁlpt of
denote (a) the phase instability regions detected by Fleet and Jepson an 18 the phase error :
the regions detected using our nonlinearity criterion. P '

. . . . that this confidence measure also detects cases where the phase
filter pairs of different scales), inversely related to the center, P

. X ; information is in reality linear, but where our phase-unwrapping
frequencies, with constant bandwidthsE 0.6 octaves. The technique yields incorrect results.

plhasehcompr(]) nehnt pf the lquagratur_e Fia'r IS pcljotted mha conto_u ig. 3(a) shows the nonlinearity measuteas a function
pot_yv ere t g horlzor?;a ﬁml vertica allxes ) En(_)te t_e i';g%? the phase gradient (median values and quatrtiles) for the
Coales hetueen 0,05 and 0.2) This allows ot e iaualzag ime SMuations shown in Fig. 1 (e, )-case described

' = ' Section II-A). The lowere;-values for phase gradient of

of the phase behavior with respect to scale and spatial positi Niooe stems from the fact that these phase gradients corre-

corresponding to image expansion (looming) and translatlgnond to nearly integer displacements (4.08 pixels/frame). The

n the o_pt|cal f.IOW case. Phase_ "]!format,fof‘ yields r_ehabl reakdown in performance starts for phase gradients beyond
information for image matching (is “stable”) if the eqmphaStFne [—150°, 150°] range (see Fig. 1). Beyond this range, as is

contours are near-vertical in the Gabor scale-space expans|Q [ : A o
[15]. Fig. 2(a) shows that the phase structure is generally sta Yldent from Fig. 3(a), the linear regression of phase over time

tat lisolated reai here th oh : felds a significantly higheg; (this has also been observed in
exceptat several isolated reglons Where the equiphase Contells, 4iions with filters tuned to different frequencies). This

become horizontal “singularities.” Fleet and Jepson haye further illustrated in Fig. 3(b), where the phase error is

proposed a straightforward heuristic to detect these “singulargy tted as a function of,. Th L
: i : ;- The majority of large phase errors
Egilr?hl?tﬁirg?r?gtsﬁo?%hi((jae) dSh(r)a‘{VS tge :jiq[g)crlisnth\?vthiiﬁedre;?%& respond to values af greater than 0.01. We conclude that
g : (. 9 _y). y cting wi . €; is a good indicator for the accuracy of the phase gradient
the filter pair output is located in a phase singularity neighbor-

hood, the unreliable component velocities can be discarded stimate. Thus, we will reject component velocities for which
! P ‘the phase information is not linear over time, i.e., when

In our approach, we estimate the phasalinearity, which  yceeds a certain threshold, The effect of the nonlinearity

is a major source of erroneous velocity estimates. There i§ifeshold,r;, on the accuracy and the density of the estimated
relationship between phase nonlinearity and phase |nstabllg}5tica| flow field will be examined in Section II1.
Indeed, one expects that, if the phase information becomes un-

r_eliable_ (unstable), itis nqt Iik_ely to ha_\ve a Iinear_ evolution over gy Velocity

time. Since we are considering spatial filter pairs and not spa- ) i )
tiotemporal ones, we can easily measure the degree to which th&N€ componentvelocity...; only estimates the velocity com-
phase is linear over time in the following way. We compute tH&Pnent in the direction, orthogonal to the corresponding filter
phase for a given filter pair at all frameghat are considered for P&’ orientation, i.e., in the direction of its spatial gradient.
the optical flow estimation, and perform a linear least-squar&8€ 2-D (full) velocity can be determined if several such es-
regression on thgp, t)-pairs (using the phase-unwrapping techt__lmates_are avaﬂgble. Tr_lus_, we use a bank of spatlgl quadrf_;lture
nique explained in Section I1-A). The mean-square-error (MSI@b‘er pairs. Each filter pair yields a component velocity. Our fil-
divided by the absolute value of the estimated gradient (in fgrbank consists of 11 quadrature Gabor filter pairs with band-
dians) ¢, yields a measure for the phase nonlinearity over tim@/idths of 5 = 0.6 octaves and is depicted in Fig. 4 (frequency
In the Gabor scale space expansion, we compute this nonfgmain).

earity measures;, as a function of spatial position over a span Every component velocity.. ; constrains the full velocity

of five pixels (note that, in the actual algorithm, it will be com10 lie on a “constraint line’Z; in a hypothetical velocity space,
puted over time). Spatial positions whereexceedsl0—® are With an orientation orthogonal te. ; [4]. This line is defined as
shaded gray in Fig. 2(b). It is clear that these areas roughly cor- VeV

respond to the phase instability regions in Fig. 2(a), although the L;: v f|’|’ = [[ve,ill-

exact shapes and sizes differ. In the subsequent simulations, the ot

nonlinearity threshold value is larger, since subpixel displac-several component velocities with different orientations are
ments, as well as deviations from pure translational motion, caresent, the intersection of the corresponding constraint lines
occur, leading to larger regression errors. It is important to noéll yield the full velocity v called intersection-of-constraints
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Fig. 4. Composition of our spatial filterbank in the frequency domain. The X number of iterations
circles correspond to the 1 sigma-borders of the enveloping Gaussians in the
frequency domain. Fig. 5. (a) lllustration of the aperture problem. The circle (dashed line) is

translating with a velocity = [1.5; 0.5] pixels/frame. The observed velocities,
when viewing through a small aperture at different spatial locations, are denoted

(10C):: Since every component velocity forces the full velocit 108 JUES 20 20Es o0 o e G e, solid
v to lie on a constraint lind;, an overdetermined set of CON-jine) andw (thin, dashed line).

straints is produced by the bank of quadrature pairs. Since the

component velocity estimates are noisy, these lines do not in-

tersect in a single point. Schunck [21] introduced his constraigith As the time interval between two state updates in the
line clustering procedure which determined the center of tlBPN, andV the number of constraint lines. In order to increase
1-D cluster formed by the intersections of the constraint linghe speed of convergence, we make adaptive using the
at a given point, with those corresponding to the local estimat@$iowing simple heuristic: iff’ decreases, we increase the time
around that point. Jepson and Black [16] went on and appliggep, As**! = 1.05 - As¥, otherwise we undo the last state
a statistical expectation—-maximazation (EM) approach to a 2gpdate and sehs*+! = 0.5 - As*.

cluster detection process, which allowed them to determine theas g demonstration to the intersection-of-constraints prin-

velocities of multiple objects. We will proceed differently angipje ysing a GPN, we describe a solution to the spatial aperture
regard the constraint lines as soft constraints in an optimizatigrylem. Consider the circle shown in Fig. 5(a), translating with
process that determines The optimization process is cast intoy velocityv = [1.5;0.5] pixels/frame. When viewed through

i .5; 0. .
agoal pro?rre]m}rr}lln@ffrmat as fO||C|)WS. 1& The two vectgr Cohm'small apertures at different positions, the partial contours seem-
ponents of the full velocity, namelyu andv, correspond to the ingly move orthogonal to their orientations, as indicated by the

two _var_lables in the goal programming problem. 2) Eac_h_co_o'ector lines in Fig. 5(a) for 16 points on the circle. Every ve-
straint line corresponds to a separate goal, namely the minimig

a-. . . ’
. . S ocity vector constrains the true velocityand these constraints
tion of the orthogonal distance between the constraint line an& y

v. The solution is found by striving toward all goals simultanea © hard-wired into the GPN. We use an initial time step=

ously, which can be achieved by minimizidig the sum of all 0.001 and set the initial state of the network to [0; 0]. The al-
ortho;]onal distances gorithm ends when the standard deviatioFpfcomputed over

Goal programming can be performed by the recurrent nequfa last ter_1 iterations, does not gxceed@Oln this S|mulaté<:2)n,
network suggested by Van Hulle [23], further called the goHT'e GPN f|nd§ the cqrrect velocity vectdvSE = 4.93107°%)
programming network (GPN). It consists of two sets of amplf’lﬁer 98 |terat_|ons. Fig. 5(b) shows the evolution of 'Fhe s_ummed
fiers, the f- and g-amplifiers, the outputs of which represenfrthogonal distances (scaled by a factor of OZLthick line,
the degree to which a goal is satisfied, and the variables of #@rting at 2.0 and decreasing), and the network states, corre-
goal programming problem, respectively. For our purpose, yegonding to the horizontal (thin, solid line) and vertical compo-
Conﬁgure the GPN in such a way that it converges to a Steﬂgnt (th|n, dashed ”ne) of the VeIOCity, both Starting at zero and
v = (u,v), where the summed orthogonal distance betwed#ifreasing.

v and the constraint lines is minimal. Contrary to the original We test this strategy for estimating the velocities of trans-
GPN, we allow the variables andv to become negative by re-lating 2-D uniform noise patterns, using the filterbank shown
placing the transfer functions of teamplifiers byg(z) = =. in Fig. 4. The noise patterns translate in 16 different directions
Furthermore, the transfer functions of tfieamplifiers are re- at 20 different speeds (logarithmically spaced between 0.2 and 5
placed byf(z) = x. We update the network state at iteratiofixels/frame), and we run 50 simulations with different random

stepk + 1 as follows: noise patterns for every combination. In this simulation, we do
N X not use a threshold to reject unreliable component velocities.

vEl — v*F _ Ag Z Vei <w _ ||Vc,7¢||> Performance is measured in terms of the error measure proposed

— Ive,ll by Fleet and Jepson [5], namely the angular error between the

INote that the 10C principle is normally aimed at determining tifue ve- space-time direction VeCto(’ga“t’ 1) and(v, 1)
locity from local velocities pooled from a spatial neighborhood, whereas we
pool estimates from different filters at a single spatial location.

2Goal programming is similar to linear programming, but with the single ob- (Va(‘fa 1) . (V’ 1)

jective replaced by several objectives or goals toward one must simultaneously 1) = arccos
strive [13]. \/1 + ||Vact||2\/1 + [Iv]]?

®3)
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£ TABLE |
1351 RESULTS FOR THETRANSLATING SQUARE SEQUENCE
904 Technique Av. St. | Dens.
Err. | Dev.
454
Horn & Schunck (modified) ||VI|| > 1.0 | 26.46° | 10.86° | 42.9%
o : Lucas & Kanade (A\; > 1.0) 0.21° | 0.16° | 7.9%
10
speed Uras et al. (det(H) > 1.0) 0.15° | 0.10° | 26.1%
> 1. .67° .87° R
Fig. 6. Results (median values and upper and lower quartiles) for tl Nagel |[V1]l2 2 1.0 2667 | 11.87° | 44.0%
translating uniform noise patterns as a function of speed. Anandan (unthresholded) 31.46° | 18.31° | 100%
H S th | locity andis the full veloci Singh (Step 2, n =2, w =2) 45.16° | 21.10° | 100%
wherev,; is the actual 2-D velocity andis the full velocity es-

. X . . H 6.16° | 4.02° | 29.3%
timate3 Fig. 6 summarizes the results. There is a breakdown ceeer >
performance for speeds greater than 3.5 pixels/frame and th_Fleet & Jepson 7 = 2.5 0.18° | 0.13° | 12.6%
is no systematic difference in performance between differe Gautama & Van Hulle 5.21° | 2.12° | 68.7%

directions (results not shown). The breakdown corresponds to

what we expect: for the second scale of filters, with a wavelength

of 7.92 pixels, this corresponds to a phase gradient of 15the temporal phase gradients over five frames. Unless stated,

(comparable to the 150f the (z, t)-example in Section 1I-A). We refer to [1] and [3] for simulation details for the other

Note that a part of the error is introduced by the quantization #gorithms. The optical flow fields, both actual and estimated,

the time domain, due to which the noise pattern makes discréf€ scaled and subsampled for visualization purposes. Flow

jumps over time. fields for the same image sequence are scaled and subsampled
For reasons of efficiency, the filter outputs are computdésing the same factors.

using cascaded 1-D convolutions, rather than computationally

expensive 2-D convolutions, as suggested by Heeger [12]. The Synthetic Image Sequences

length of a 1-D template is is set to 6 standard deviations of thel) Translating Square Sequenc@his sequence consists of

Gaussian envelope of the corresponding filter pair. The f”t%rtranslating dark square, 40 pixels wide, on a white background

pair outputs at one time frame are computed by zero—paddiag: [1.33,1.33]). It is constructed by downsampling a larger

the image and performing the 1-D convolutions. This can resyltsjon which moves at an integer velocity. It has been used by

in erroneous velocity estimates at the image borders, duegQronet al. to demonstrate the spatial aperture problem.

the discontinuity introduced by zero-padding. Therefore, we p e to the large spatial extent of our filters, our approach

discard a border region demarcated by the point at which t§gas not suffer from the aperture problem and yields 2-D ve-

spatial Gaussian envelope reaches 10% of its peak level, iigeity rather than normal velocity estimates. However, if the

ato;y/log,(100) pixels. square were larger, our approach would yield normal veloci-
ties at square’s sides, resulting in large errors. Indeed, the low
IIl. RESULTS performances of some techniques are due to the inability to dis-

We test our algorithm on the image sequences that hasgminate between 2-D velocity and normal components. Table |
been used by Barroet al. [1], [3] and Galvinet al.[9], [19] Summarizes our results and those obtained by Bagtah [1],
for comparing performances between different optical flobs].
algorithms. We include some of these performances in order2) Translating and Diverging Tree Sequencekhe Trans-
to better interpret our results. The performances are givenlagng Tree sequence simulates a translational camera move-
the mean and standard deviation of the angular efrq8), as ment along the-axis, orthogonal to the line of sight, while cap-
well as the densities of the resulting flow field estimates (tHgring a textured, planar surface (the picture of a tree), which is
border region is excluded to compute the density). The imaglkanted with respect to the fronto-parallel plane. The velocities
sequences are divided into two groups: the synthetic imagee parallel to the image-axis and range from 1.73 to 2.26
sequences, for which the 2-D optical flow fields are knowmixels/frame. In the Diverging Tree sequence, the same planar
and the real image sequences. For the first group of sequensesface is captured by a camera that is translating along the line
we use a very tight stability criteriofr; = 0.005) and only of sight, resulting in a looming effect, with the center of ex-
compute 2-D velocities if there are at led$t,;, = 7 valid pansion in the middle of the image. The speeds vary from 1.29
component velocities available. For the second group, we repixels/frame on the left side, to 1.86 pixels/frame on the right
these constraints tg;, = 0.05 and a minimum ofN,,;, = 5 side of the image.
valid component velocities. For all simulations, we estimate The error statistics for the different methods are included in

Table Il. The errors for these sequences are rather large, com-

3We will assume that the output of the GPN is an estimate of the actual 2-D

velocity. Thus, we neglect the spatial aperture problem. This is a reasonaB%red to some of the results by Barerral. [1] [3] Since these

assumption, since the spatial extent of our filters is fairly large (see Section Unage sequences have smooth flow fields, this is possibly due to
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TABLE I B
RESULTS FOR THETRANSLATING AND DIVERGING TREESEQUENCE  ~ #8 " CE =~ | > © * ° * - * v+ s+
Translating Tree Diverging Tree SoTIIIIIIIIIIIIIL
Technique Av. St. | Dens. || Av. St. | Dens. ::.t:. B
Err. | Dev. Err. | Dev. :::: : : - : ..........
Horn & Schunck (modified) ||V7]| > 5.0 | 1.89° | 2.40° | 53.2% | 2.50° | 3.89° | 32.9% ST il
P P AP AP P A A L
Lucas & Kanade (A, > 1.0) 0.66° | 0.67° | 39.8% || 1.94° | 2.06° | 48.2% P N AP S S
PP Ararararay Bk B A S
Uras et al. (det(H) > 1.0) 0.46° | 0.35° | 41.8% | 3.83° | 2.19° | 60.2% VPP RN R
VA EEEE RN
Nagel |VI|l; > 5.0 2.24° | 3.31° | 53.2% | 2.94° | 3.23° | 100% ?55/// PR
Anandan 4.54° | 3.10° | 100% || 7.64° | 4.96° | 100% vosssassERRNRENRRA
Singh (Step 2, n =2, w =2, <0.1) |1.11° | 0.89° | 99.6% | 8.40° | 4.78° | 99.0% C D
Heeger 4.53° | 2.41° | 57.8% || 4.95° | 3.09° | 73.8%
Fleet & Jepson 7 = 2.5 0.32° | 0.38° | 74.5% | 0.99° | 0.78° | 61.0% o T
Gautama & Van Hulle 2.67° | 1.43° | 67.8% || 4.07° | 2.42° | 77.3% L
the spatial integration of local estimates by the other techniqu ’ :
(either gradients or component velocities at different spatial I T
cations), which is absent in our approach (we only pool comp EEPRETINE
nent velocities from a single spatial location).

3) Yosemite Fly-Through Sequencéhe Yosemite fly-
through sequence is the more complex test case of the synthﬁF.zéﬂgﬁc)
image sequences. Each frame has been generated by mapping
an aerial photograph onto a digital-terrain map [12]. Speeds in

(a) Middle frame of the Yosemite fly-through sequence. (b) Actual flow
and (d) Estimated flow fields with, = 0.005 and7, = 0.01.

. TABLE Il
the lower left corner go up to four pixels/frame and the clouds RESULTS FOR THEY OSEMITE SEQUENCE
translate to the right at one pixel/frame while changing shape.
due to which their true motion is not simply related to image Technique Av. St. | Dens.
brightness changes. The middle frame of the image sequence Err. | Dev.

shown in Fig. 7(a), and the actual flow field in Fig. 7(b).

o . ] Horn & Schunck (modified) ||VI|| > 5.0 | 5.48° [ 10.41° | 32.9%
The result shown in Fig. 7(d) illustrates the efficacy of our

. . o . . Lucas & Kanade (\; > 1.0) 4.10° | 9.58° | 35.1%
phase nonlinearity criterio. Since the clouds are changing sha
over time, the phase information is not linear and, as a cons_Uas €t ol (det(H) > 1.0) 6.73° | 16.01° | 14.7%
guence, results in unreliable estimates. Most of the velocitie Nagel |[VI||z > 5.0 6.03° | 11.04° | 32.9%
above the mountain rim have indeed been rejected by our N0 Apnandan 15.84° | 13.46° | 100%

linearity criterion. Also,_the speedsin the Iow_er left are too higf Singh (Step 2, m =2, w=2, A < 0.1) | 12.90° | 1157 | 97.8%
to be captured by our filters: the breakdown in performance fc

our filterbank lies around 3.5 pixels/frame (see Section I-C) Hecger (combined) 11.74° | 19.00° | 44.8%
beyond which point, the estimated phase is no longer line¢ Fleet & Jepson 7 = 2.5 4.29° | 11.24° | 34.1%
over time (at least not given our simple phase-unwrapping tecl Gautama & Van Hulle 4.40° | 3.74° | 34.7%

nigue). [For this sequence we relax our nonlinearity criterion

slightly to 7; < 0.01: otherwise, the density of the resulting )
flow is only 17.8%, with an angular error 6f50° + 2.49°; see 4 Complex Synthetic Image Sequencié¢ test our tech-

Fig. 7(c).] The error statistics are shown in Table IIl. nique further on two complex, synthetic image sequences de-

Other algorithms have been described with much lower gfeloped by Galvin [9], [19], namely the Street sequence and the

rors and higher densities than those in Table IIl, such as #&fice Sequence, for which they provide a ground truth flow

“Skin and Bones” algorithm by Jet al. [17] and the “Total field. For every sequence, 20 frames are available via public

Least-Squares-Based Optic Flow” technique developed by pdjpy (we have used frames 98-102). We have also estimated

Hadiashar and Suter [2]. The first yields an angular error me flow fields using Fleet and Jepson’s technique (using frames

216 + 2.0° with a density of 100%, while the second yields90—110) yvith a spatiotemporal Gaussian smoothing kernel with
an error of 1.97 & 1.96" with a density of 72.0%. However, in o = 2.5pixels (frames), and setto 1.25and 2.5, and Lucas and

both cases, the clouds have been masked, and the performaﬁ@(%?qeys (u5|rr:g frarg;_es 33_(;07),’ Wr'_?rl is the lbest pe:ormmg
for the original image sequence, i.e., with the cloud region, hay (EI' nk;?uﬁ/'rlrth eSs:u |;es y avmha. | c rssu s aredsf ozvn i
not been reported. If the clouds are masked, our algorithm yieia avle V. 1he Street sequence nas aiso been used for testing

and error of 3.46+ 2.15 (this is not significantly better than Weickert and Schnorr’s algorithm (2001), which is a differential
for the original image sequence, since our nonlinearity criteri

éﬁchnique that imposes a spatiotemporal smoothness constraint
rejects most velocity estimates in the cloud region). 4http://www.cs.otago.ac.nz/research/vision/Downloads/.
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TABLE IV
RESULTS FOR THESTREET AND OFFICE SEQUENCES

Street Office
Technique Av. | St. | Dens. || Av. St. | Dens.
Err. | Dev. Err. Dev.

Lucas & Kanade (A; > 1.0) | 4.83° | 5.42° | 30.5% || 7.45° | 6.89° | 15.5%
Fleet & Jepson (r =1.25) | 3.12° | 3.13° | 20.5% || 10.33° | 19.32° | 5.4%
Fleet & Jepson (r = 2.5) 3.15° | 4.40° | 23.2% || 6.81° | 12.07° | 8.6%
Gautama & Van Hulle 4.64° | 2.48° 1 23.7% || 9.59° | 6.34° | 21.4%

Fig. 9. (a)Middle frame and (b) estimated flow field for the NASA sequence.
The estimated flow field has a density of 87.9%.

Fig. 8. (a) Middle frame and (b) estimated flow field for the SRI sequenci
The estimated flow field has a density of 71.3%.

5Fig. 10. (a)Middle frame and (b) estimated flow field for the Rotating Rubik’s

on the flow field. They reportan average angular error of 4.8 Cube sequence. The estimated flow field has a density of 70.0%.

with a density of 100%.

3) Rotating Rubik’s Cube Sequencé&his sequence shows a
Rubik’s cube which is rotating counter-clockwise on a turntable.
Since there are no actual flow fields available for these imad@e motion field induced by the rotation of the cube includes
sequences, itis impossible to quantitatively evaluate our resultslocities less than two pixels/frame. Velocities on the turntable
For every sequence, we will show the middle frame, give thrange from 1.2 to 1.4 pixels/frame, and those on the cube are
short description given by Barrat al.[1], [3], and compare this between 0.2 and 0.5 pixels/frame.
to our estimated flow field. The first two sequences are exampled-ig. 10(b) shows that almost all of the valid velocity estimates
of global motion (resulting from camera motion), whereas thare located on the side of the turntable (due to the rotation), on
other two result from moving objects. For a detailed descriptighe turntable itself and on the cube. Indeed, besides these ob-
of the results with other techniques, see [1] and [3]. jects, there are no moving objects. The velocity estimates on the
1) SRI SequenceThe camera translates parallel to theube roughly range from 0.1 to 0.5 pixels/frame. The velocities
ground plane, perpendicular to the line of sight, in front ajo up to 1.5 pixels/frame.
clusters of trees. It is a challenging sequence because of thd) Hamburg Taxi Sequencdn this street scene, there are
relatively poor resolution, the amount of occlusion, and the lofeur moving objects: 1) the taxi turning the corner; 2) a car in
contrast. Velocities are as large as two pixels/frame. See Figt@e lower left, driving from left to right; 3) a van in the lower
The estimated velocities in the slanted ground plane corméght driving right to left; and 4) a pedestrian in the upper left.
spond to what is expected, i.e., a linear gradient. The velocitiesage speeds of the four moving objects are approximately 1.0,
in the background are a lot smaller than those of the forem@&s0, 3.0, and 0.3 pixels/frame, respectively.
tree cluster. The latter velocities are orthogonal to the branchesFig. 11 shows that all four objects are successfully detected by
orientations, due to the spatial aperture problem (which is alsar technique. We have manually segmented the velocity esti-
the case in other techniques described by Baetaal.) mates to the corresponding objects on the basis of their direction
2) NASA SequenceThis sequence is primarily dilational. ¢, speed and spatial location [see grayscale coding of arrows in
The camera moves along its line of sight toward the Coca Cdt&y. 11(b)]. The mean and standard deviations of their speeds
can near the center of the image. Image velocities are typicadlyd directions are the following: 1).71 4+ 0.22 pixels/frame
less than one pixel/frame. with 8§ = 141.32° + 17.38° for the taxi turning the corner
The resulting flow field is indeed dilational [Fig. 9(b)]. Com-(3929 pixels); 22.56 + 0.29 pixels/frame with = —9.59° +
pared to other techniques, such as those by Letcals our tech-  5.036° for the car in the lower left (1726 pixels); 3)49 +0.23
nique yields a very dense flow field, namely one of 87.9%, compixels/frame with¢ = 179.32° £ 7.41° for the van in the
pared to 35.3% and 13.3%, respectively. The speeds are belower right (642 pixels); and 40.24 + 0.04 pixels/frame with
one pixel/frame. f = 187.96° + 18.86° for the pedestrian (373 pixels).

B. Real Image Sequences
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Density

—-——4'
X

]
Fig. 11. (a) Middle frame and (b) estimated flow field for the Hamburg Taxi 80 005 o010 o5 020 800 o005 ot0 o015 o2
sequence. The estimated flow field has a density of 24.5%. The arrow colo Ghoise Grise
in (b) correspond to the manual label each velocity has received (there are four
objects in total), based on position, direction, and speed. Fig. 13. (a) Error performance (mean angular error and standard deviation)
and (b) density of the estimated flow field for the Diverging Tree sequence, as a
A B function of the noise level,,.;.. (expressed as a fraction of the maximum gray
level in the image sequence. In both figures, two levels,diave been used:
= . z 100 7, = 0.05 (solid line) andr, = 0.1 (dashed line).
& nl
. ulations illustrate the tradeoff between accuracy and density,

the preference for which is application-specific. In addition,
the parameter values that achieve a certain accuracy/density are
o4 25 image sequence specific as well.

We have further evaluated the performance of our technique
0I e el 0 IR N ERNIT] . . .. . . .
Qo3 6.0 Te.01 Lo To02 o0l in the presence of additive Gaussian noise, with zero mean and

T T, standard deviatiow,.;se, €Xpressed as a fraction of the max-
C D imum amplitude of the stimulus. We have evaluated the angular
1001 error usingr; = 0.05 andN,,;, = 5. The error performance re-
mains fairly constant with increasing levels of noise [Fig. 13(a),
solid line and error bars] and, again, the density is greatly in-
41 50 fluenced by the presence of noise [a density of 50% is reached
for opeise = 0.08; Fig. 13(b), solid line]. If the nonlinearity
21 251 threshold is relaxed tg, = 0.1, the error performance deterio-
Dl N rates slightly [Fig. 13(a), dashed Iine,. thg error bar; ar'e' not in-
6 5 4 6 8 10 12 0 2 4 & & 10 12 cluded for clarity’s sake], but the density increases significantly.
Norio Nein This indicates that, although the separate phase estimates at a

Fio 12 o el e Diverding T vl given time frame are subject to noise, the slope of the regression
i L2 ety analysis on e Dvergig Tres seduence () Etauatifi remains accurate. Thus, the problem is that the increase of
of the nonlinearity measure;. (b) Evaluation of the performance (density)e; can be due to the presence of noise or due to the nonlinearity

as a function of the nonlinearity measwge (c) and (d) Evaluation of the of the phase information at that spatial location.
performance as a function of the minimal number of valid component estimates

Nin.

501

Yo

V. DISCUSSION

V. SENSITIVITY ANALYSIS From a computational point of view, our approach is compa-
ﬁaeble to Fleet and Jepson’s [5], albeit that we perform a spatial

In order to examine the influence of the parameters on t . ) : )
. convolution at every time frame, rather than a single spatiotem-
performance of our technique, we plot the error performance

d densitv of th timated flow field for the Di ina T oral convolution. For the sake of comparison, we give the com-
and density of the estimated flow field for the Diverging regutation times for the Hamburg Taxi and the NASA sequences

sequence as a function of the ph.ase nonIinga_rity threshpldfor both techniques. One should, however, take into account
[Fig. 12(a) and (b)], and as a function of the minimal number ¢f, ¢ o technique has been implemented in Matlab, whereas

valid component velocitiesYuix [Fig. 12(c) and (d)]. Fig. 12() \ve have used Fleet and Jepso6'smplementation, which is

and (b) show the mean angular errors and standard deviatigiiicly available. Furthermore, we only use five time-frames
for different values of the phase nonlinearity threshald, for the computation, whereas Fleet and Jepson use 21 frames.
with Nin = 7. As the nonlinearity criterion is relaxed, bothyt is aiso important to note that the computation times for both
the mean error and standard deviation increase slightly (frgfiplementations are highly dependent on the densities of the
3.83° £2.21° t0 4.93° & 3.25°), whereas the density increasesesulting flow fields, since only for those points, the full ve-
considerably. Similarly, as is shown in Fig. 12(c) and (d), whegcity is determined. Our technique estimates the flow field for
the minimal number of valid component velocities is increasee Hamburg Taxi sequence in 68 s (density of 21.1%) and the
(keeping7; = 0.003), the mean and standard deviation oNASA sequence in 205 s (density of 60.7%), while Fleet and
the angular error decrease slightly (frofr31° £ 2.74° to Jepson’stechnique needs 104 (density of 27.0%) and 202 s (den-
3.40° 4+ 2.18°) and the density is greatly influenced. Both simsity of 13.3%). As mentioned in their paper, the computational
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load can be significantly reduced (also for our technique) mgodel; for an overview, see [22]). A more sophisticated scheme,
computing the component velocities on a discrete spatial grgiljch as thaffinemodel of motion, could be used, which would
e.g., by computing a complex filter output everypixels, and, resultin a quadratic, rather than a linear regression of the phase
furthermore, a number of 1-D convolution results can be useser time. The constraints corresponding to the resulting com-

multiple times. Our approach offers the advantage that the coppnentmotion fieldswould, however, become more compli-
putations are purely local (including the stability criterion) andated. All these are topics for further research.

that it can, therefore, be implemented very efficiently if only a
subsampled version of the optical flow field is required.

Another advantage of our technique is that it allows for arbi-
trary temporal spans over which the flow field is computed. In
the simulations that have been performed, we use a span of il
time frames. To examine the effect it has on the performance, W
increase this number for the Diverging Tree sequence (adjust
7; such the density remains around 75%). Initially, there is
slight decrease in average angular error of Dadter which the
performance remains constant. A longer temporal span mi??é
even cause problems due to our nonlinearity measure: if
translating object (or texture) moves beyond a filter pair’s spati%
extent within the temporal span, the phase information of th
filter pair becomes nonlinear and will be rejected. Indeed, for th
Diverging Tree sequence, we need to relax the nonlinearity ¢ !
terion in order to obtain the same density for longer time spa
In our opinion, this is true for other techniques as well: the low&"
densities for Fleet and Jepson’s and Lucas and Kanade’s ety
niques could be due to the long time spans over which the fl
field is estimated (21 and 15 frames, respectively).

Since our technique uses an approach which is related to Fleet
and Jepson’s, namely a phase-based one, we highlight some of

VI. CONCLUSION

We have introduced a novel phase-based technique for esti-
gting the optical flow field. It allows for a direct measurement
the phase nonlinearity, which is a good indicator for the re-
ility of the velocity estimate. At a single spatial location,
eral component velocities are estimated using quadrature
abor filter pairs, each imposing a constraint on the full ve-
ity at that point. A recurrent neural network determines
full velocity that is consistent with these constraints. Our
pproach has been tested on various image sequences, both
nthetic and realistic, and the results have been compared
those of other techniques. However, it is difficult to rank
fferent technigues, since their performances depend on dif-
rent factors (the average and standard deviation of the error
d the density of the estimated flow field), and since they can
substantially for different image sequences. Overall, our
hnique ranks among the best ones we have tested, however,
there is room for further improvement.
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