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Abstract

The paper presents a newparameter-freeapproach to non-rigid image regis-
tration, where displacements, obtained through a mapping of boundary struc-
tures in the source and target image, are incorporated as hard constraints
into elastic image deformation. As a consequence, our approach does not
contain any parameters of the deformation model (elastic constants). The
approach guarantees theexactcorrespondence of boundary structures after
elastic transformation provided that correct input data are available. We de-
scribe a linear and an incremental model, the latter model allows to cope also
with large deformations. Experimental results for 2-D and 3-D synthetic as
well as real medical images are presented.

1 Introduction

Image registration aims at finding a transformation between different object representa-
tions. A typical application in medicine is, for example, the registration of human brain
tomograms, where combination of data form different sources helps a physician to better
locate and/or identify diagnostically or, respectively, therapeutically relevant structures
in images. Formally, a mathematical transformation is applied, which puts one object
representation (source image) into best possible spatial correspondence with another one
(target image). Important criteria for assessing the performance of registration schemes
are accuracy, robustness, and time required to compute the transformation.

The non-rigid registration approach, presented in this paper, belongs to the class of
physically-based numericalmethods (e.g., [1], [6], [9]), where non-rigid transformations
are modeled as deformations of physical bodies (elastic solids, viscous fluids) driven by
applied forces. The word “numerical” is used in the definition of this group of methods
in order to avoid confusion with some other methods, e.g. thin-plate spline models [3],
[16], which also have a physical motivation. Driving forces in physically-based numerical
methods are usually derived from image data using some similarity measure and transfor-
mations are then computed by using finite difference or finite element discretizations of
motion equations of the underlying materials.

In this paper, we propose a parameter-free registration model based on the non-linear
equilibrium equations of elasticity theory. We carried out two different linearizations of
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the equilibrium equations to obtain, correspondingly, our linear and incremental model.
Both models can be applied for image registration tasks. Instead of forces, we used a set
of hard constraints (in our case displacements) obtained by mapping boundary structures
in the source image to those in the target image. The constraints are incorporated in
addition to the conditions on the image boundary into the elastic deformation model.
Discrete representations of both the linear and incremental model are based on the finite
element method (FEM), which is advantageous compared to traditionally implemented
finite differences, since it allows to cope with complicated boundary conditions.

The principal advantages of our approach as compared to standard physically-based
numerical registration methods are: i) We do not use any localintensity-basedsimilar-
ity measure, since intensity properties alone are not always reliable features, e.g. in the
case of non-rigid multi-modality registration. ii) Driving forces areimplicitly used in our
approach via incorporating prescribed displacements as constraints. As a consequence,
the remaining parameters of the deformation model (elastic constants) drop out from the
mathematical formulation of our registration approach; thus the model becomes com-
pletelyparameter-free. iii) Since there exists a unique solution to the mathematical prob-
lem associated with our registration approach, it can always be guaranteed that the re-
quired deformation is obtained and that certain structures in the source image areexactly
matched with those of the target image due to the constraints, provided that correct input
data are available. iv) By using the incremental model, we obviate the known limitation
of models based on linearized elasticity theory (see, for example, [1]), arising from the
unrealistic assumption of small deformations.

Several other physically-based numerical approaches are known in the literature. Broit
[5] originally used a model derived from elasticity theory to automatically find an optimal
mapping between a CT image and an atlas of brain anatomy. This linear model assumed
small deformations. The applied forces have been derived by correlating intensity-based
properties in local regions in the source and target image. This model has been improved
through the use of a multi-resolution scheme by Bajcsy and Kovaˇcič [1] and later by
Schormann et al. [17], to increase the speed of computations and to avoid local minima.
A probabilistic model based on the FEM, which has been reported to have properties
similar to those of [5], [1], has been proposed by Gee et al. [12].

Because of the potentially large variability of anatomical structures, possible defor-
mations required to map a source onto a target image are not limited to locally small
deformations. To cope with this problem, another approach in the class of physically-
based numerical methods based on the theory of fluid mechanics has been introduced by
Christensen et al. [6] (and later improved by Bro-Nielsen and Gramkow [4] to increase
speed). A common drawback of this fluid model in comparison to the elastic approaches
mentioned above is that a local intensity-based similarity measure is still used for the
derivation of forces.

Davatzikos et al. [10] proposed a linear elastic model based on a boundary mapping,
for which no local similarity measure is used. The elastic deformation is driven by exter-
nal forces obtained from mapping parametric representations of the outer cortical surface
and the boundary of the ventricles. This 2-D model has then been extended in [9] to 3-D
in such a way that it can also cope with inhomogeneous deformations. Though this model
is closely related to our approach, the principal differences are that i) it assumes only
small deformations and ii) is parameter-dependent (the values of elastic constants have to
be empirically determined to obtain optimal registration results).
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2 Parameter-Free Registration Model

This section formally describes our elastic registration approach based upon two lineariza-
tions of the non-linear equilibrium equations of linearized elasticity. We use variational
formulations of model equations, which allow us to straightforwardly obtain their discrete
representations, as it will be shown later in this section.

2.1 Model Equations

Elastic registration can be interpreted as finding a state of static equilibrium of the source
image, represented as an elastic body, under applied external forces.

Let 
 be a subset ofR3 with a continuous boundary�. The non-linear equilibrium
equation with the homogeneous Dirichlet boundary condition can be written as [8]:

�
A(u) = f in 
;
u = 0 on�;

(1)

whereA(u) is the non-linear elasticity operator,f is a vector field of applied forces, and
u denotes the unknown displacement field.

To obtain a first linearization of (1), which corresponds to our linear model, we com-
pute the derivative of the non-linear elasticity operator at the origin and replaceA(u) in
(1) throughA0(0)u under the assumption of small displacements. The weak or varia-
tional formulation of the linearized equilibrium equation is then given as [8]: Findu 2 V

such that

a(u;v) = f(v); 8v 2 V := fv 2 (H1(
))3;v = 0 on�g; (2)

whereH1 denotes the corresponding Sobolev space, and the symmetric bilinear form
a(u;v) and the linear formf(v) are defined as:

a(u;v) =

Z



3X
i;j=1

eij(u)eij(v) dx; (3)

f(v) =
1

2�

Z



f � v dx: (4)

Here,f = (f1; f2; f3)
t 2 (L2(
))3 denotes the applied body forces,

eij(v) = eji(v) =
1

2
(@jvi + @ivj); i; j = 1; 2; 3 (5)

is the linearized strain tensor, and� is the Lamé elastic constant (which can also be
considered as a scaling factor for the forces). The second elastic constant� of the standard
formulation was set to zero to eliminate one degree of freedom from the model. As a
consequence, objects in images do not laterally shrink when being stretched. This makes
sense in non-rigid registration (cf. [1]), since driving forces need only to be applied in the
direction where the object is supposed to grow. The properties of the bilinear and linear
form allow us to prove the existence and uniqueness of the solution of (2) (see [8], [14]
for details).
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A serious limitation of the linear model is the assumption of only small deformations,
which is generally not true. To cope with large deformations, we introduce the second
linearization of (1) which corresponds to our incremental model and is obtained by suc-
cessively solving linear problems, starting fromu0 = 0:

A
0(un)Æun = Æfn; n = 0; 1; : : : (6)

whereÆfn = f
n+1 � f

n andÆun = u
n+1 � u

n. This formulation is also known as the
Lagrangian incremental method [8].

The variational formulation of (6) with the parameter� set to zero is given as [8]:

a(Æu;v) = l(v); 8v 2 V; (7)

where

a(Æu;v) =

Z



3X
i;j;p;q=1

âijpq(ru
n)@pÆu

n
q @jvi dx; (8)

l(v) =
1

�

Z



Æfn � v dx; (9)

and

âijpq(ru
n) = aijpq +

3X
k=1

akjpq@ku
n
i +

3X
r=1

aijrp@ru
n
q +

+
3X

k;r=1

akjpr@ru
n
q @ku

n
i +

3X
s;r=1

apjsrEsr(u
n)Æiq ; (10)

whereaijpq = 1

2
(ÆipÆjq + ÆiqÆjp); i; j; p; q = 1; 2; 3, Æij is Kronecker’s symbol, andEsr

denotes the components of the Green-St. Venant strain tensor.

2.2 Parameter-Free Discrete Representation

We obtain discrete representations of both the linear and incremental model by using
the Galerkin method[7], where the spaceV of admissible functions in the variational
formulation is replaced by a finite-dimensional subspaceVN := spanf�1;�2; : : : ;�Ng.
The solution vectorsu = fuig of the linear model andÆu = fÆuig of the incremental
model are obtained from the resulting systems of linear equations.

We do not use any explicit external forces, and the elastic transformation is computed
only due to the inhomogeneous boundary conditions. As a consequence, the remaining
elastic parameter� can be dropped together with the right-hand side of the model equa-
tions from the discrete formulations of (2) and (7), thus making our approach completely
parameter-free.

The incorporation of prescribed displacements (or, respectively, displacement incre-
ments for the incremental model) has been realized through the conventional procedure
to incorporate inhomogeneous boundary conditions into our FEM formulation (as de-
scribed, for example, in[18]). According to this procedure, we have to modify the matrix
of the linear system of equations by filling its rows and columns corresponding to the
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nodal points where the displacements are prescribed with zero and setting the diagonal
elements to one. The right-hand side vector of the modified system consists of the sum of
the replaced matrix columns weighted by the prescribed values of displacements. It also
contains these values in the positions corresponding to the nodal points where they were
prescribed.

There is one important point which requires extra discussion. When applying the
incremental method implemented on a discrete grid in the case of large deformations, the
deformation gradient may locally approach zero after some iterations. As a consequence,
the matrix of the discrete incremental formulation becomes badly conditioned and its
further updates cannot be carried out.

To bypass this problem, we can use approximations ofA
0(un) in the iteration process.

One possible approximation can be obtained as

A
0(un) � A

0(uk); k = maxfi 2 f0; : : : ; ng j det(I+rui) � �g: (11)

In other words, we do not compute the update of the stiffness matrix if the determinant
of the deformation gradient locally falls below the threshold value�. In this case, we
preserve memory about a limited number of preceding deformations.

Another possibility is to takeA0(u0) = A
0(0) as an approximation ofA0(un). This

means that we do not carry memory about preceding deformations in our model. One
advantage is that this method is computationally less expensive compared to the previous
one.

3 Experimental Results

In this section, we present experimental results achieved with our registration approach.
In our first experiment, we registered a 3-D synthetic image with a part of cortical

surface from a real image using the linear model. The computations took about 23 minutes
on a R-8000 processor. We obtained prescribed displacements, needed as input data in
our model, by matching the boundary of the cube with the cortical boundary using the 3-D
minimal distance algorithm [2]. The size of both images was80 � 80 � 80 voxels. The
result of the experiment is presented in the top row of Figure 1. Despite the complicated
shape of the cortical surface, a rather good approximation of it has been obtained. In the
middle row of Figure 1, magnitudes of the displacement field are shown for the slices
15, 30, 45. In the bottom row of the figure, the deformations of the slices 15, 30, 45 are
represented as deformations of a rectangular regular grid.

In our next experiment, we registered256� 256 pre- and post-operative 2-D MR im-
ages of the same patient using the linear model. These images are depicted in the top
row of Figure 2. The computations took about 80 seconds on a R-8000 processor. Prior to
elastic registration, the two 3-D data sets were globally registered by using an affine trans-
formation. For computation of this transformation, we used 5 pairs of landmarks which
were manually localized. As corresponding structures for elastic transformation, we took
the outer and the inner skin contours which were extracted by using an edge detector. Ad-
ditionally, we used the brain surface contours, the contours of the right lateral ventricle,
and the contour of the tumor in the source image together with the contour of the resec-
tion area in the target image which were manually as well as semi-automatically (using a
snake approach [13]) determined. They are depicted in the middle row of Figure 2. We
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Figure 1: 3-D registration experiment. Top row: Source, target, and deformed source
images. Middle row: Magnitudes of the displacement field for the horizontal slices 15,
30, 45. Bottom row: Deformations of the horizontal slices 15, 30, 45 projected onto the
xy-plane and illustrated by a grid.
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Figure 2: 2-D registration example. Top row: Two MR slices taken from the same patient
with the pre-operative source image at the left. Middle row: Corresponding structures
in the globally transformed source image and in the target image. The pre- and post-
operative tumor outlines have been kindly provided by OA Dr. med. U. Spetzger of the
Neurosurgical Clinic, Aachen University of Technology (RWTH). Bottom row: Regis-
tration results. Left image: Result of affine registration. Right image: Result of elastic
registration.
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Figure 3: Comparison between the linear and incremental registration model. Top
row/left: Prescribed displacements. Top row/right: Computed deformation using the lin-
ear model. Bottom row: Computed deformation using the incremental model with mem-
ory (left) and without memory (right). One can see that the incremental model preserves
the grid topology when computing large deformations.

also fixed two boundary structures in the source image: the occipital part of the midline
of the brain and a part of thedura materin the brain shift area at the top of the brain. The
input data for elastic transformation were obtained through the use of the minimal dis-
tance algorithm (for the skin contours) and from the snake model for all other structures
(see [15] for more details about obtaining correspondences using the snake model). The
result of elastic registration is shown in the right image of the bottom row of Figure 2.
One can see that a more accurate match of the corresponding anatomical structures has
been achieved after elastic registration compared to global affine registration (left image).
Local elastic transformation has also allowed to cope with metamorphic processes due
to the tumor resection. For a different approach to cope with deformations due to brain
shifts which is based on a three component tissue model, see also [11].

Our linear model may cause topology violations in the deformed image in the case
of large deformations. For illustration purposes, a comparison between the linear model
and incremental model with and without memory in the case of a large deformation is
presented in Figure 3. The value of� in (11) for this experiment was chosen to be 0.2.
One can see that both incremental models preserve grid topology in contrast to the linear
model. However, the deformation computed with the model without memory is more
smooth. The choice between the two incremental models should be made in dependence
of a concrete application.
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4 Conclusion

In this paper, we have described a parameter-free elastic registration approach where im-
ages are elastically deformed through incorporation of prescribed displacements obtained
by mapping boundary structures. We have presented experimental results for a linear
and an incremental model, where the latter model generally allows to cope with large
deformations, as it has been demonstrated for a synthetic example.

Since our approach does not contain any parameters of the deformation model, only
the input data can influence the registration result. Hence accuracy of the input data plays
a crucial role for the success of our registration approach. From experimental results,
we can conclude that good registration results can be obtained if correct input data are
available. Very complex shapes of objects in medical images make the development of
methods which allow to precisely determine the point mapping between boundary struc-
tures a very challenging task. As examples of such techniques, we have used the minimal
distance algorithm and a snake model. However, their practical usage, for example in the
case of irregular contour shapes, is limited. The development of more reliable methods is
the objective of current research.

Another important point of future research is the efficient numerical implementation
of our approach. The implemented method of conjugate gradients with preconditioning
shows acceptable results if the matrix can completely be loaded into the computer memory
(several seconds in 2-D and minutes in 3-D). However, it is not always possible in the 3-D
case due to the large number of variables of the deformation model. Hence prior to the
usage of our approach in real medical applications, further developments, e.g. explicit
parallelization and possibly multi-grid techniques, are required.
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