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Abstract. A new probabilistic background model based on a Hidden Markov
Model is presented. The hidden states of the model enable discrimination be-
tween foreground, background and shadow. This model functions as a low level
process for a car tracker. A particle filter is employed as a stochastic filter for the
car tracker. The use of a particle filter allows the incorporation of the information
from the low level process via importance sampling. A novel observation density
for the particle filter which models the statistical dependence of neighboring pix-
els based on a Markov random field is presented. The effectiveness of both the
low level process and the observation likelihood are demonstrated.

1 Introduction

The main requirement of a vision system used in automatic surveillance is robustness
to different lighting conditions. Lighting situations which cast large shadows are partic-
ularly troublesome (see figure 1) because discrimination between foreground and back-
ground is then difficult. As simple background subtraction or inter-frame differencing
schemes are known to perform poorly a number of researchers have addressed the prob-
lem of finding a probabilistic background model [6, 17, 10, 13, 20]. Haritaoglu et al. [6]
only learn the minimal and maximal grey-value intensity for every pixel location. The
special case of a video camera mounted on a pan-tilt head is investigated in [17]. Here
a Gaussian mixture model is learnt. Paragios and Deriche [13] demonstrate that a back-
ground foreground/segmentation based on likelihood ratios can be elegantly incorpo-
rated into a PDE Level Set approach. In order to acquire training data for these methods
it is necessary to observe a static background without any foreground objects. Toyama
et al. [20] address the problem of background maintenance by using a multi-layered ap-
proach. The intensity distribution over time is modelled as an autoregressive process of
order 30. This seems to be an unnecessarily complex model for a background process.
None of the above models are able to discriminate between background, foreground,
and shadow regions. In the present paper we propose a probabilistic background model
based on a Hidden Markov Model (HMM). This model has two advantages. Firstly it is
no longer necessary to select training data. The different hidden states allow the learn-
ing of distributions for foreground and background areas from a mixed sequence. By
adding a third state it is possible to extend the model so that it can discriminate shadow
regions. The background model is introduced in section 2.

In addition to the low level process it is necessary to build a high level process that
can track the vehicles. Probabilistic trackers based on a particle filters [7] are known to



be robust and can be extended to tracking multiple objects [11]. The benefit of using
a particle filter is that the tracker can recover from failures [7]. But very importantly
the use of a particle filter also allows a way to utilise the information of the low level
process modelled by the HMM. The propagated distribution for the previous time-step
t − 1 is effectively used as a prior for time t. It is very difficult to fuse two sources of
prior information. However, importance sampling, as introduced in [8], can be used to
incorporate the information obtained from the low level process. Instead of applying the
original algorithm an importance sampling scheme which is linear in time [16] is used
here. The importance function itself is generated by fitting a rectangle with parameters
XI to the pixels which are classified as foreground pixels (see figure 5) and using a
normal distribution with fixed variance and mean XI as the importance function. The
remaining challenge is to build an observation likelihood for the particle filter which
takes account of spatial dependencies of neighbouring pixels. The construction of this
observation likelihood is discussed in in section 3. We demonstrate that by employing
a Markov random field it is possible to model these statistical dependencies.

Such a car tracking system has to be able to compete with existing traffic monitor-
ing systems. Beymer et al. [2] built an very robust car tracker. Their tracking approach
is based on feature points and works in most illumination conditions. The disadvantage
of the system is that it is necessary to run a complex grouping algorithm in order to
solve the data association problem. The use of additional algorithms would be neces-
sary to extract information about the shape of the cars. By modelling cars as rectangular
regions it would be possible to infer about their size and allow classification into basic
categories. Koller et al. [10] as well as Ferrier [4] et al. already demonstrated applica-
tions of contour tracking to traffic surveillance. [10] extracts a contour extraction from
features computed from inter-frame difference images as well as the grey value inten-
sity images themselves. In the case of extreme lighting conditions as shown in figure 1
this system is likely to get distracted. Approaches which model vehicles as three dimen-
sional wire frame objects [18, 12, 15] are of course less sensitive to extreme lighting
conditions. The main drawback of modelling vehicles as three dimensional objects is
that the tracking is computationally expensive. The challenge is to design a robust real-
time system which allows the extraction shape information.

2 A probabilistic background model

In addition to being able to discriminate between background and foreground it is also
necessary to detect shadows. Figure 2 clearly shows that the grey-value distributions of
the shadow differs significantly from the intensity distributions in the foreground and
background regions. This is the motivation for treating the shadow region separately.
Since all three distributions have a large overlap it is of course not possible to construct
a background model which is purely based on intensity values. However another source
of information is available: the temporal continuity. Once a pixel is inferred to be in
a foreground region it is expected to be within a foreground region for some time. An
suitable model to impose such temporal continuity constraints is the Hidden Markov
Model (HMM) [14]. The grey-value intensities over time for one specific pixel location
is to be modelled as a single HMM, independent of the neighbouring pixels. This is



Fig. 1. A traffic surveillance example. This is a typical camera image from a traffic surveillance
camera. Notice that especially for dark coloured cars intensity differences between foreground
and background are small. In order to track the cars robustly it is necessary to detect the shadows
as well as the cars.

of course an unrealistic independence assumption. The spatial dependencies of neigh-
bouring pixel locations will be modelled by the higher level process (see section 3).
The reader should note that the specific traffic surveillance situation (see figure 1) is
particularly suited to investigate this class of model because the speed of the cars does
not vary greatly. It is therefore possible to learn parameters which will determine the
expected duration a pixel belongs to a foreground, shadow or background region.
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Fig. 2. Intensity histograms of the different regions. Intensity values for single pixel positions
were collected from a 30 seconds long video sequence and manually classified into the regions:
foreground, shadow or background. The intensity histograms of the different regions clearly show
a large amount of overlap. A method which is purely based on grey-value intensities is therefore
inadequate for this problem.

The model parameters of the HMM with N states are the initial state distribution
π = {πi}, the state transition probability distribution A = {ai,j}, and the emission
or observation probability for each state pf (z), pb(z) and ps(z). The set of parameters
defining the HMM model will be abbreviated as ω := (A, π, pf , ps, pb). Standard texts



include [14, 9]. Based on the intensity histograms of figure 2 the emission models of
the background and shadow regions are modelled as Gaussian densities. Since very little
about the distribution of the colours of vehicles is known, the observation probability
of the foreground region is taken to be uniform. Hence

pf (z) =
1

256
, ps(z) =

1√
2πσ2

s

e
− (z−µs)2

2σ2
s , and pb(z) =

1√
2πσ2

b

e
− (z−µb)2

2σ2
b .

(1)

It is of course possible to employ more complex emission models. In section 2.2 it will
be shown that is in fact necessary to use a more complex model for the observations.

2.1 Parameter learning

For a given training sequence the model parameters are estimated by using a maximum
likelihood approach. Because the model has hidden parameters an expectation maximi-
sation (EM) type approach is used. In this particular case the Baum Welch algorithm
[9] is applied as a learning algorithm. Because EM-type algorithms are not guaran-
teed to find the global maximum and are very sensitive to initialisation it is necessary
to explain how the initialisation is done. In order to find an initialisation method the

0 50 100 150 200 250
0

0.05

0.1

z

p
f
(z)

0 50 100 150 200 250
0

0.05

0.1

z

p
s
(z)

0 50 100 150 200 250
0

0.05

0.1

z

p
b
(z)

Foreground Shadow Background

Fig. 3. Learnt emission models. Shown is a set of emission models for one pixel location. The dis-
tributions pf , ps and pb model the intensity distributions for all three states foreground, shadow
and background. It should be noted that the emission models can vary between pixel locations.

following time constants are defined: τb - the typical time duration a pixel belongs to
the background, and τs, τf the typical duration for shadow and foreground. Let λb, λs,
and λf be the proportion of the time spent in background, shadow and foreground,
with λf + λs + λb = 1. All these parameters are determined empirically. Using these
definitions an intuitive transition matrix can be chosen as

A =


1− τ−1

b τ−1
b Λsf τ−1

b Λfs

τ−1
s Λbf 1− τ−1

s τ−1
s Λbs

τ−1
f Λbs τ−1

s Λsb 1− τ−1
f


 , (2)

whereΛij = λi/(λi+λj). The initial state distribution π is chosen to be π = {λb, λs, λf}.
The mean of the observation density for the background state µb can be estimated to



be the mode of the intensities at a given pixel since λb � λs and λb � λf . The vari-
ance σ2

b is determined empirically. The initial parameters of the observation density
for the shadow region are based on the assumption that the shadow is darker than the
background, i.e.

µs =
µf + 2σb

2
, and σs =

µs

2
. (3)

This ensures that µs < µb in case µb > 2σb, i.e. the background intensities are not as
low as intensities in the shadow areas. At each iteration of the Baum Welch algorithm,
the backward and forward variables are rescaled for reasons of numerical stability [9].
It is not necessary to learn a transition probability distribution A for every pixel. By
learning one transition probability distribution for an observation window the complex-
ity of the learning is reduced considerably. A set of learnt emission models are shown
in figure 3. The corresponding transition probability distribution is of the form

A =


0.986 0.012 0.001

0.013 0.884 0.101
0.033 0.025 0.941


 , (4)

A close inspection of these transition probabilities reveals that during learning dark
cars are mistaken for shadows. As a consequence the expected duration for being in a
foreground state is unrealistically short. For the particular lighting situation (see figure
1) it is possible to solve the problem by adding the constraint afs = 0. This implies
that the transition probability from foreground to shadow should be zero. Of course this
constraint cannot be applied in the general case. It is therefore necessary to find a more
general solution. As a result the parameters of the observation density for the shadow
change. Especially the variance σS is now smaller σS = 41.95 instead of 44.97. The
corresponding transition matrix A is

A =


0.980 0.015 0.003

0.013 0.897 0.891
0.047 0.000 0.952


 , (5)

notice that the values of aff is increased.

2.2 Two observations improve the model

Initial experiments show that by using only one observation, dark cars are not detected
sufficiently well (see figure 4). In order to make the method more robust, it is desirable
to reduce the amount of overlap of the observation densities. In particular it is necessary
to reduce the ambiguity between dark foreground regions and shadows. These ambigu-
ities can be reduced by introducing a second observation. To be precise the responses of
two different filters will be used. The HMM is no longer modelled for every pixel but
for sites on a lattice such that the filter supports of the different sites do not overlap. As
a first observation a simple 3 × 3 average is used. It can be observed that background
and shadow regions are more homogeneous than foreground regions. It would therefore
make sense to introduce a second observation which measures the intensity variation in



a small neighbourhood each pixel. In order to test this approach a simple 3 × 3 Sobel
filter mask is used as a second observation. It is possible to show empirically that for
this specific data, the responses of the Sobel filter and the mean intensity response at
a pixel are uncorrelated. Hence the two observations are considered to be independent.
The comparison shown in figure 4 shows that the use of two observations greatly im-
proves the detection of dark cars. Whereas the choice of the average filter is justified
the chosen Sobel filter is by no means optimal. A filter which implies computing a
higher order derivative of the image data as for example a Laplace filter or even a spatio
temporal filter might be a much better alternative.

Fig. 4. Using two observations improves the model. For each time step t every pixel is classified
to be in a foreground, background, or shadow region. For visualisation purposes the pixels for
which the forward probability p(zt, zt−1, Yt = f |ω) is greater than the forward probability for
the alternative states are marked in black. The image on the left shows the raw data. The black
box indicates the area in which the model is tested. The two images on the right show the sets
of pixels which are classified as foreground pixels. It shows that the classification based on two
observations (right) is superior to the method based on only one measurement (middle).

2.3 Practical Results

In order to test the performance of the model the forward probabilities p(zt, zt−1, Yt|ω)
are evaluated for the three different states Yt ∈ {f, b, s} for each time-step t. The
discrete state Yt for which the forward probability is maximal is taken as a discrete
label. By determining discrete labels this classification method discards information
which could be used by a higher level process. But for now this should be sufficient to
discuss the results obtained with the method. Two typical results are shown in figure
5. A movie which demonstrates the performance of this process can be found in the
version of this paper on our web site (http://www.robots.ox.ac.uk/∼vdg). The interior
of the car is not detected perfectly. But there is clearly enough information to detect
the boundaries of the vehicle. In order to illustrate the importance of the state transition
probability the matrix A was altered by hand. The results are presented in figure 6
and display clearly that the transition probability plays an important role. The effect
is of course most evident when the discrimination based on measurements alone is
ambiguous.

3 The car tracker

The remaining challenge is to build a robust car tracker. Probabilistic trackers based on
a particle filters [7] are known to be robust and can be extended to tracking multiple



Fig. 5. Results of the background modelling. The discrete label Yt for which the forward
probability p(zt, zt−1, Yt|ω) is maximal is used as a discrete label for visualisation (see text).
Foreground pixels are marked in black, shadow pixels in grey, and background pixels in white. It
should be noted that even for dark coloured cars the results are respectable. The labels will then
be used by a higher level process to locate the vehicles.

Fig. 6. Importance of the temporal continuity constraint. Like in figure 5 the pixels are as-
signed a discrete label Yt as which forward probability p(zt, zt−1, Yt|ω) is maximal. In this
experiment the transition probability of a model which uses two observations was altered such
that all aij = 1/3 in order to explore the importance of the temporal continuity constraint. Each
pixel is classified (see text) as foreground (in black), shadow (in grey) or background (white). A
comparison with the images shown in figure 5 shows that these results are clearly worse. Obvi-
ously the transition probability A plays a crucial role.



objects [11]. In order to build such a tracker it is necessary to model the observation
likelihood

p(Z|X ;ϑ) (6)

for a set of measurements Z and a hypothesis X . The parameters of the model are
denoted by ϑ. For the present purpose it is sufficient to model the outlines of the cars as
a perspectively distorted rectangle which will be parameterised by the state vector X .
In order to track cars robustly it is not sufficient to take edge measurements as in [7].
[19] showed that detection of the background aids finding the foreground object. The
problem is that in this case the measurements Z cannot be assumed to be independent
(also see [19]). These conditions lead us to model the likelihood (6) as a conditioned
Markov random field (MRF) (see for example [5, 21]). In Gibbs form an MRF can be
written as

P (Z|X ;ϑ) =
exp(−Hϑ(Z,X))∑

Z′∈Z exp(−Hϑ(Z ′, X))
. (7)

The denominator of the fraction is known as the partition function of the MRF. The dif-
ficulty is now to find a model which is tractable yet still captures the spatial dependence
of neighbouring measurements.

2-dim. lattice vertical scan-lines horizontal scan-lines

Fig. 7. Neighbourhood structure of the MRF. The set of sites on a lattice S is marked by
circles. The neighbourhood structure at one particular site s (marked as a filled black circle) is
different in each case. The neighbours r ∈ δ(s) of the site s are marked by black circles which
are filled grey. The set of cliques are indicated by lines connecting neighbouring sites.

3.1 Modelling the observation likelihood

As mentioned in the previous section, one difficult problem is to find an energy func-
tion H for which the likelihood P (Z|X ;ϑ) can be evaluated efficiently. The energy
function H will depend on a lattice S and a corresponding neighbourhood system
δ := {δ(s) : s ∈ S} (see figure 7). The set of cliques will be denoted by C. In order to
take the distribution of the measurement z at a given site and the statistical dependence
of measurements at neigbouring sites into account we let the energy function

Hϑ
A(Z,X) =

∑
s∈AX

gA(zs) +
∑

(s,r)∈C∩A2
X

ϑA · (zs − zr)2 , (8)



where AX denotes an area which is either in the foreground or background, i.e. X ∈
{B,F}. Since the function gA models the distribution of the measurement at a given
site it would be ideal if one could make use of the emission models which were learnt
for the different states of the HMM (see section 2.1). But as it will be shown later the
energy function needs to be translational invariant (13) so therefore gA cannot depend
on a particular site s. And in order to compute the partition function efficiently (section
3.3) it is necessary that the functions gf and gb are normal distributions. The foreground
distribution gf is therefore chosen to be a normal distribution with a large variance. The
background distribution gf is taken to be the normal with mean µf and variance σf such
that it approximates the the mixture of the background and shadow emission models (1)
learnt by the HMM.

The set of sites which belong to a given areaAX depends of course on the hypothe-
sis X . Because the partition function depends also on X it will be necessary to evaluate
it for every hypothesis X . It turns out that if the lattice S is two dimensional, the parti-
tion function is too expensive to compute. In the following it is explained that it is not
possible to approximate the observation likelihood (7). It is therefore necessary to find a
simpler model. It is known that under certain conditions the pseudolikelihood function
[1, 21], defined as ∏

s∈S

p(zs|zS\s;ϑ) (9)

can be used for parameter estimation instead of the Maximum Likelihood approach
based on the MRF (7). It can be shown [21] that estimators obtained by maximizing the
pseudolikehood can compete in terms of statistical properties with maximum likelihood
estimators. Although some authors state that when the variables are weakly correlated,
the pseudolikehood is a good approximation to the likelihood [3] it seems to be an open
problem under which conditions precisely it can be used as an approximation to the
likelihood function. In section 3.2 it will also become clear why the pseudolikehood
method cannot be used to estimate X . An alternative is to restrict the MRF to measure-
ments on scan lines taken out of the image. This will simplify the model considerably.
The observation likelihoods of the different scan lines will be treated as independent.
Based on the grid in figure 11 it is possible to formulate a random field for each of the
horizontal {hi} and vertical lines {vi}. The likelihood is now of the following form:

p(Z|X ;ϑ) =
∏

l

exp(−(Hϑ
B +Hϑ

F )(Z,X))∑
Z∈Z exp(−(Hϑ

B +Hϑ
F )(Z,X))

, (10)

where {l} is the set of lines on the grid. The energies Hϑ
B and Hϑ

F are defined as in (8)
except that the neighbourhood system has changed (see figure 7). The partition function
for the set of lines can be written as∑

Z∈Z
exp(−(Hϑ

B +Hϑ
F )(Z,X)) =

∏
i

∑
Z∈Zi

exp(−Hϑ
A(i)(Z,X)) (11)

where for every i �= j one has Zi ∩Zj = ∅. So Z is union of mutually disjoint sets Zi.
Therefore it is now possible to compute the partition function because it only depends
on line segments which are entirely in the foreground or background.



3.2 Learning the parameters of the random field

Learning the model parameters by a maximum likelihood method is computationally
expensive [21]. And as mentioned above, maximising the pseudeolikelihood (9) with
respect to ϑ leads to an effective estimator for ϑ. For reasons which will be appar-
ent later we consider the pseudolikelihood for a observation window T ⊂ S which is
entirely in the foreground or background. That implies that the conditioning on the hy-
pothesis X can be ignored for this analysis. The energy function of p(zs|zδ(s);ϑ) is in
this case equal to the neighbourhood potential. The logarithm of the pseudolikelihood
for an observation window T ⊂ S has the form

PLT (Z;ϑ) =
∑
s∈T

[
g(zs) + ϑVs(zszδ(s))− ln

∑
zs

exp(−ϑVs(zszδ(s)))

]
, (12)

where V is defined as Vs :=
∑

r∈δ(s)(zs − zr)2. The neighbourhood potential must
satisfy a special spatial homogeneity condition. The potential is shift or translational
invariant if for all s, t, u ∈ S

t ∈ δ(s)←→ t+ u ∈ δ(s+ u) and VC+u(zs−u) = VC(zs) . (13)

Furthermore a parameter ϑ is said to be identifiable if for every ϑ′ ∈ θ there is a
configuration Z such that

p(Z;ϑ) �= p(Z;ϑ′) . (14)

The maximum pseudolikelihood estimator for the observation window T maximises
PLT (Z, ·). If the potential is translational invariant and the parameter ϑ is identifiable
Winkler [21] (Theorem 14.3.1 on page 240) proves that this estimator is asymptotically
consistent when the size of the observation window increases. Winkler also proves that
that the log of the pseudolikelihoodPLT is concave. In the present setting it is of course
necessary to learn the parameters for the foreground and background energies Hϑ

F and
Hϑ

B separately. Since the PLT is concave it is possible to use a standard gradient decent
algorithm to find the maximum of the log pseudolikelihood. In order to compute the
gradient of the log pseudolikelihood it is desirable that the potential only depends on
the parameters linearly. The gradient of the log pseudolikelihood can be written as

∇PLT (Z;ϑ) =
∑
s∈T

[
V (zszδ(s))− E(V (Zszδ(s))|zδ(s);ϑ)

]
, (15)

where E(V (Zszδ(s))) denotes the conditional expectation with respect to the distribu-
tion p(zs|zδ(s);ϑ) on Zs. The graphs of the pseudolikelihood can be found in figure
8.

3.3 Computing the partition function

The main reason for adapting a one dimensional model was the problem of comput-
ing the partition function of the observation likelihood (10). Due to equation (11) it is
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Fig. 8. Pseudolikelihood of training data. The pseudolikelihood (12) is plotted for different
values of ϑ. The distance between neighbouring sites d is set be d = 4 for horizontal and d = 2
for the vertical lines. Because we work on fields, d differs for horizontal and vertical lines. It
should be noted that there is a difference between the models. The functions are concave, as
expected.

possible to to compute the partition function by precomputing

BN :=
∑
Z∈Z
− exp(Hϑ

B(Z)) and FN :=
∑
Z∈Z
− exp(Hϑ

B(Z)) , (16)

where vector of measurements Z has length N . Rather than computing the value of the
partition function for a particular hypothesisX it is desirable to compute a factor α(X)
such that ∑

Z∈Z
exp(−(Hϑ

B +Hϑ
F )(Z,X)) = α(X)C , (17)

where C is some constant. Now the problem of computing BN and FN needs to be
addressed. The energy functions Hϑ

B can be written as a quadratic form, i.e. Hϑ
B(Z) =

ZtMZ . The matrix M is of the form


(λ+ ϑ) −ϑ 0 · · · 0

−ϑ (λ+ 2ϑ) −ϑ · · · ...

0 0
. . .

. . . 0
...

... −ϑ (λ+ 2ϑ) −ϑ
0 0 · · · −ϑ (λ + ϑ)




(18)

The matrix M is symmetric so it is possible to approximateBN as

BN =
∑
Z∈Z

exp(−ZtMZ) ≈
∫
RN

exp(−ZtMZ) dZ = (2π)N/2 det(M)−
1
2 . (19)

Since gf and gb are normal distributions this approximation holds for BN as well as
FN .

3.4 Results

The observation likelihood p(Z|X) as defined in (8) was tested on a set of single im-
ages. The results are summarised in figure 9. Whereas the results for horizontal and
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Fig. 9. Log-likelihood for horizontal translation and scaling. The horizontal translation and
scaling of the shape template is illustrated in figure 11. For both the horizontal translation and
the scaling the log-likelihood for the independent model (ϑ = 0) (left) and the MRF with the
learnt parameter vartheta (see figure 8). The parameters for the intensity distributions gf and
gs are σ2

b = 25, µb = 102, σ2
f = 600, µb = 128. The results obtained for the scaling clearly

need to be improved. See text for discussion.

vertical translation are good the results obtained for the scaling of the foreground win-
dow are poor. In order to test whether the MRF has any effect ϑF and ϑB are set to zero
which is equivalent to assuming that two neighbouring measurements are independent.
The graphs in figure 9 show that the modelling the statistical dependence of neighbour-
ing measurement using the MRF does have an effect. As a first step to improve the
model the neighbourhood structure was changed hoping that the interaction terms Vs

(12) would have a greater effect. Now every pixel location on a scan lines is a site for
the MRF. The resulting energy function is

Hϑ
A(Z,X) =

∑
s∈AX

gs
A(zs) +

∑
δ(s)∈AX

ϑA · (zs − zs+d)2 . (20)

Only the distance between neighbours depends on a predefined spacing d. The results of
this improved method are shown in figures 10 and 11. The fact that the results obtained
with the new observation likelihood (20) are better shows that the MRF is very sensitive
to the chosen neighbourhood structure. This raises the question if there is any way to
determine an optimal neighbourhood structure automatically. The hand-picked MRF
we chose might not be the best after all.

A more ambitious step would be to construct a observation likelihood which makes
use of the forward probabilities p(zt, zt−1, Yt = f | ω). This would complicate the
computation of the partition function. But based on the encouraging results we obtained
from the HMM (see figure 5) this could lead to a far more powerful model. It can be
concluded that the MRF does the right thing but needs to be improved so it can be used
in a tracker.

4 Conclusion

Both a new probabilistic background model as well as a observation likelihood for
tracking cars are presented. Although the background model is particularly suited to
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Fig. 10. Log-likelihoods for the improved model. Similar to figure 9 the log-likelihoods are
shown for horizontal and vertical translation as well as scaling using the improved model defined
in (20). The model parameters itself are chosen as in figure 9. Although the maximum for the
horizontal translation is not at zero figure 11 demonstrates that the most likely hypothesis leads
to a correct localisation.

the traffic surveillance problem it can be used for a wide range of application domains.
The results presented in figure 5 show that the use of this background model could lead
to a robust tracker. The observation likelihood itself however still needs to be improved.
The contribution this paper makes can be summarised as follows.

Probabilistic background model. Unlike many other background models the model
presented here is capable of modelling shadow as well as foreground and background
regions. Another considerable advantage of this model is that it is no longer necessary
to select the training data. HMMs are a suitable model for this problem as they impose
temporal continuity constraints. Although using two observation did improve the results
significantly the choice of filters is not optimal. The results presented in figure 6 support
the claim that it is crucial to model the transition probabilities correctly.

Car tracker. In order to build a robust car tracker it is necessary to model the inside
of the vehicles as well as the background and the statistical dependence of neighbour-
ing pixels. This is possible by modelling an observation density used in a particle filter
which is based on an MRF. However it has to be noted that the MRF is very sensitive
to the choice of the neighbourhood system. It remains an open problem which neigh-
bourhood system is optimal. The formulation of the MRF based on scan-lines leads to
a model which is computationally tractable. It should be noted that the presented obser-
vation likelihood is consistent with a Bayesian framework since the measurements do
not depend on the hypothesised position of the vehicle. The use of importance sampling
makes it possible to feed the information of the low level process into the car tracker in
a consistent fashion.

Future work. Since the illumination changes throughout the day it is necessary to derive
a criterion when the the parameters of the background model need to be updated. It is
furthermore necessary to investigate how the observation density can be improved.
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Fig. 11. Observation window and scan lines of the car tracker. The right image illustrates the
grid used by the algorithm. The observation window is marked in black. The measurements are
taken on scan-lines (in white). The hypothesised position of the car is shown in dark grey. The
other two images illustrate how well the improved model localises. The most likely hypothesis is
shown as a solid black line. The dashed lines illustrate the minimal and maximal configurations
of the variation. See figures 10 and 9 for the corresponding log-likelihood functions.
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